中国农学通报 ›› 2022, Vol. 38 ›› Issue (24): 100-108.doi: 10.11924/j.issn.1000-6850.casb2021-0911
所属专题: 生物技术
金涛涛1,2(), 赵明1,2, 毛洁莹1,2, 罗天宇1,2, 刘玮1,2, 王琼1,2()
收稿日期:
2021-09-24
修回日期:
2022-02-05
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
王琼
作者简介:
金涛涛,男,1997年出生,江西丰城人,硕士研究生,主要从事土壤修复及球囊霉素蛋白相关研究。通信地址:330045 江西南昌青山湖区志敏大道1101号江西农业大学,Tel:13979817669,E-mail: 基金资助:
JIN Taotao1,2(), ZHAO Ming1,2, MAO Jieying1,2, LUO Tianyu1,2, LIU Wei1,2, WANG Qiong1,2()
Received:
2021-09-24
Revised:
2022-02-05
Online:
2022-08-25
Published:
2022-08-22
Contact:
WANG Qiong
摘要:
旨在系统了解国内外球囊霉素相关土壤蛋白(GRSP)研究趋势及热点问题。基于CiteSpace软件,以Web of Science与CNKI为数据库,从发文量、国家、机构、文献共被引、关键词等多方面对2004—2020发表的GRSP相关文献进行可视化分析。结果表明,GRSP研究经历了起步、发展、稳定三个阶段,中国发文量最多,其次是美国与西班牙。发文量最多的机构为中国科学院,远超其他机构,但国家与机构之间合作较少,有待进一步加强。最具有里程碑意义的文章是GILLESPIE AW(2011)、FOKOM R(2012)以及RILLIG MC(2004)。鉴于GRSP的强大生态功能,未来应该引起学者的更多关注,尤其是对GRSP的结构特征、提取纯化、生态功能应用等方面仍需深入研究。
中图分类号:
金涛涛, 赵明, 毛洁莹, 罗天宇, 刘玮, 王琼. 基于CiteSpace的球囊霉素相关土壤蛋白知识图谱分析[J]. 中国农学通报, 2022, 38(24): 100-108.
JIN Taotao, ZHAO Ming, MAO Jieying, LUO Tianyu, LIU Wei, WANG Qiong. Knowledge Mapping of Glomalin-related Soil Protein: CiteSpace-based Analysis[J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 100-108.
国家 | 中心性 | 频数 | 首发年份 |
---|---|---|---|
中国 China | 0.36 | 103 | 2010 |
美国 USA | 0.20 | 28 | 2004 |
西班牙 Spain | 0.38 | 20 | 2007 |
智利 Chile | 0.35 | 18 | 2008 |
印度 India | 0.04 | 17 | 2015 |
澳大利亚 Australia | 0.16 | 13 | 2012 |
巴西 Brazil | 0.01 | 13 | 2012 |
德国 Germany | 0.25 | 11 | 2007 |
捷克 Czech Republic | 0.01 | 10 | 2016 |
英格兰 England | 0.26 | 10 | 2006 |
国家 | 中心性 | 频数 | 首发年份 |
---|---|---|---|
中国 China | 0.36 | 103 | 2010 |
美国 USA | 0.20 | 28 | 2004 |
西班牙 Spain | 0.38 | 20 | 2007 |
智利 Chile | 0.35 | 18 | 2008 |
印度 India | 0.04 | 17 | 2015 |
澳大利亚 Australia | 0.16 | 13 | 2012 |
巴西 Brazil | 0.01 | 13 | 2012 |
德国 Germany | 0.25 | 11 | 2007 |
捷克 Czech Republic | 0.01 | 10 | 2016 |
英格兰 England | 0.26 | 10 | 2006 |
Keywords | Centrality | Count | Year |
---|---|---|---|
arbuscular mycorrhizal fungi | 0.08 | 132 | 2005 |
glomalin | 0.04 | 98 | 2004 |
aggregate stability | 0.11 | 73 | 2005 |
soil carbon pool | 0.10 | 55 | 2005 |
protein | 0.07 | 52 | 2004 |
glomalin-related soil protein | 0.16 | 48 | 2005 |
hyphae | 0.07 | 42 | 2005 |
organic matter | 0.12 | 37 | 2005 |
plant | 0.04 | 30 | 2009 |
Keywords | Centrality | Count | Year |
---|---|---|---|
arbuscular mycorrhizal fungi | 0.08 | 132 | 2005 |
glomalin | 0.04 | 98 | 2004 |
aggregate stability | 0.11 | 73 | 2005 |
soil carbon pool | 0.10 | 55 | 2005 |
protein | 0.07 | 52 | 2004 |
glomalin-related soil protein | 0.16 | 48 | 2005 |
hyphae | 0.07 | 42 | 2005 |
organic matter | 0.12 | 37 | 2005 |
plant | 0.04 | 30 | 2009 |
[1] |
THAKUR M P, GEISEN S. Trophic regulations of the soil microbiome[J]. Trends in microbiology, 2019, 27(9):771-780.
doi: 10.1016/j.tim.2019.04.008 URL |
[2] | SMITH S E, READ D J. Aycorrhizal symbiosis[J]. Quarterly review of biology, 2008, 3(3):273-281. |
[3] | 陈云, 马克明. 城市菌根真菌多样性、变化机制及功能应用[J]. 生态学报, 2016, 36(14):4221-4232. |
[4] | ASMELASH FISSEHA B T, BIRHANE EMIRU. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands[J]. Frontiers in microbiology, 2016, 7(1):1-10. |
[5] |
WRIGHT S F, UPADHYAYA A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil science, 1996, 161(9):575-586.
doi: 10.1097/00010694-199609000-00003 URL |
[6] |
WRIGHT S F, UPADHYAYA A, BUYER J S. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis[J]. Soil biology & biochemistry, 1998, 30(13):1853-1857.
doi: 10.1016/S0038-0717(98)00047-9 URL |
[7] |
RILLIG M C. Arbuscular mycorrhizae, glomalin, and soil aggregation[J]. Canadian journal of soil science, 2004, 84(4):355-363.
doi: 10.4141/S04-003 URL |
[8] | WANG Q, WANG W J. GRSP amount and composition: importance for soil functional regualation[M]. Nova Science Publishers: Fulvic and humic acid: chemical composition, soil application and ecological effects, 2015:39-71. |
[9] |
SINGH P K, SINGH M, TRIPATHI B N. Glomalin: an arbuscular mycorrhizal fungal soil protein[J]. Protoplasma, 2013, 250(3):663-669.
doi: 10.1007/s00709-012-0453-z URL |
[10] |
GADKAR V, RILLIG M C. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60[J]. Fems microbiology letters, 2006, 263(1):93-101.
doi: 10.1111/j.1574-6968.2006.00412.x URL |
[11] |
SCHINDLER F V, MERCER E J, RICE J A. Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content - science direct[J]. Soil biology & biochemistry, 2007, 39(1):320-329.
doi: 10.1016/j.soilbio.2006.08.017 URL |
[12] | COMIS D. Glomalin: hiding place for a third of the world's stored soil carbon[J]. Agricultural research, 2002, 50(9):4-7. |
[13] |
WU Q S, HE X H, ZOU Y N, et al. Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and β-glucosidase in the rhizosphere of citrus unshiu[J]. Soil biology & biochemistry, 2012, 45(1):181-183.
doi: 10.1016/j.soilbio.2011.10.002 URL |
[14] | UDAYAKUMAR S, LAXMISAGARA S K, SANDEEP K. Soil aggregates, aggregate-associated carbon and nitrogen, and water retention as influenced by short and long-term no-till systems[J]. Soil & tillage research, 2021, 208:1-12. |
[15] | CHI G G, SRIVASTAVA A K, WU Q S. Exogenous easily extractable glomalin-related soil protein improves drought tolerance of trifoliate orange[J]. Archives of agronomy & soil science, 2018, 64(10):1-10. |
[16] |
VODNIK D, GRCMAN H, MACEK I, et al. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil[J]. Science of the total environment, 2008, 392(1):130-136.
doi: 10.1016/j.scitotenv.2007.11.016 URL |
[17] |
GAO W Q, WANG P, WU Q S. Functions and application of glomalin-related soil proteins: a Review[J]. Sains malaysiana, 2019, 48(1):111-119.
doi: 10.17576/jsm-2019-4801-13 URL |
[18] | 王建, 周紫燕, 凌婉婷. 球囊霉素相关土壤蛋白的分布及环境功能研究进展[J]. 应用生态学报, 2016, 27(2):634-642. |
[19] | SINGH A K, ZHU X A, CHEN C F, et al. The role of glomalin in mitigation of multiple soil degradation problems[J]. Critical reviews in environmental science and technology, 2020, 1(1):1604-1638. |
[20] | 石小岑, 李曼丽. 国际MOOC研究热点与趋势--基于2013-2015年文献的Citespace可视化分析[J]. 开放教育研究, 2016, 22(1):90-99. |
[21] | 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2):242-253. |
[22] | 高玉娟, 石娇, 李新. 基于CiteSpace的草原碳汇研究的知识图谱分析[J]. 草业学报, 2020, 29(1):195-203. |
[23] | 董莉丽. 基于Citespace的土壤团聚体研究热点和趋势分析[J]. 咸阳师范学院学报, 2020, 35(1):48-56. |
[24] | 吴永红, 靳少非. 基于CiteSpace的重金属污染土壤修复研究文献计量分析[J]. 农业环境科学学报, 2020, 39(1):454-461. |
[25] | 唐浩竣, 李海萍, 陈文悦, 等. 基于科学知识图谱谈土壤有机碳研究进展[J]. 土壤学报, 2019, 56(1):541-552. |
[26] | FOKOM R, ADAMOU S, TEUGWA M C, et al. Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon[J]. Soil & tillage research, 2012, 120(1):69-75. |
[27] |
GILLESPIE A W, FARRELL R E, WALLEY F L, et al. Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials[J]. Soil biology & biochemistry, 2011, 43(4):766-777.
doi: 10.1016/j.soilbio.2010.12.010 URL |
[28] |
LOVELOCK C E, WRIGHT S F, CLARK D A, et al. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape[J]. Journal of ecology, 2004, 92(2): 278-287.
doi: 10.1111/j.0022-0477.2004.00855.x URL |
[29] |
TRESEDER K K, TURNER K M. Glomalin in ecosystems[J]. Soil science society of america journal, 2007, 71(4):1257-1266.
doi: 10.2136/sssaj2006.0377 URL |
[30] | 施生旭, 童佩珊. 基于CiteSpace的城市群生态安全研究发展态势分析[J]. 生态学报, 2018, 38(1):8234-8246. |
[31] | 罗杨, 吴永贵, 段志斌, 等. 基于CiteSpace重金属生物可给性的文献计量分析[J]. 农业环境科学学报, 2020, 39(1):17-27. |
[32] |
KOIDE R T, PEOPLES M S. Behavior of Bradford-reactive substances is consistent with predictions for glomalin[J]. Applied soil ecology, 2013, 63(1):8-14.
doi: 10.1016/j.apsoil.2012.09.015 URL |
[33] | WANG Q, WANG W J, HE X, et al. Role and variation of the amount and composition of glomalin in soil properties in farmland and adjacent plantations with reference to a primary forest in North-Eastern China[J]. Plos one, 2015, 10(10):e0139623. |
[34] | RILLIG M C, WRIGHT S F, NICHOLS K A, et al. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J]. Plant & soil, 2001, 233(2):167-177. |
[35] | COMIS D. Glomalin hiding place for a third of the world's stored soil carbon agricultural research-U.S[J]. Department of agriculture, science and education administration, 2002, 50(9):4-7. |
[36] |
WANG Q, LI J W, CHEN J Y, et al. Glomalin-related soil protein deposition and carbon sequestration in the old yellow river delta[J]. Science of the total environment, 2018, 625(1):619-626.
doi: 10.1016/j.scitotenv.2017.12.303 URL |
[37] |
RILLIG M C, MUMMEY D L. Mycorrhiza and soil structure[J]. New phytologist, 2006, 171(1):41-43.
doi: 10.1111/j.1469-8137.2006.01750.x URL |
[38] |
FRANZLUEBBERS A J, WRIGHT S F, STUEDEMANN J A. Soil aggregation and glomalin under pastures in the southern piedmont USA[J]. Soil science society of america journal, 2000, 64(3):1018-1026.
doi: 10.2136/sssaj2000.6431018x URL |
[39] | WANG Q, CHEN J, CHEN S, et al. Terrestrial-derived soil protein in coastal water: metal sequestration mechanism and ecological function[J]. Journal of Hazardous Materials, 2020, 386(1):1-40. |
[40] |
GONZáLEZ-CHáVEZ M C, CARRILLO-GONZáLEZ R, WRIGHT S F, et al. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J]. Environmental pollution, 2004, 130(3):317-323.
doi: 10.1016/j.envpol.2004.01.004 URL |
[41] |
STAUNTON S, SABY N P A, ARROUAYS D, et al. Can soil properties and land use explain glomalin-related soil protein (GRSP) accumulation? A nationwide survey in France[J]. Catena, 2020, 193(1):104620.
doi: 10.1016/j.catena.2020.104620 URL |
[42] |
SINGH A K, RAI A, SINGH N. Effect of long term land use systems on fractions of glomalin and soil organic carbon in the indo-gangetic plain[J]. Geoderma, 2016, 277(1):41-50.
doi: 10.1016/j.geoderma.2016.05.004 URL |
[43] | 金涛涛, 赵明, 吴佳海, 等. 庐山常绿阔叶林常见树种根际球囊霉素相关土壤蛋白分布特征及其影响因素[J]. 生态学杂志, 2021, 40:2698-2708. |
[44] |
SINGH A K, RAI A, KUSHWAHA M, et al. Tree growth rate regulate the influence of elevated CO2 on soil biochemical responses under tropical condition[J]. Journal of environmental management, 2019, 231(1):1211-1221.
doi: 10.1016/j.jenvman.2018.11.025 URL |
[45] | CURAQUEO G, BAREA J M, ACEVEDO E, et al. Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a mediterranean agroecosystem in central Chile[J]. Soil & tillage research, 2011, 113(1):11-18. |
[46] |
JORGEARAUJO P, QUIQUAMPOIX H, MATUMOTOPINTRO P T, et al. Glomalin-related soil protein in French temperate forest soils: interference in the bradford assay caused by co-extracted humic substances[J]. European journal of soil science, 2015, 66(2): 311-319.
doi: 10.1111/ejss.12218 URL |
[47] | WANG C Y, FENG H Y, YANG Z F, et al. Glomalin-related soil protein distribution and its environmental affecting factors in the Northeast Inner Mongolia[J]. Arid zone research, 2013, 30(1):22-28. |
[48] |
WANG Q, BAO Y, LIU X, et al. Spatio-temporal dynamics of arbuscular mycorrhizal fungi associated with glomalin-related soil protein and soil enzymes in different managed semiarid steppes[J]. Mycorrhiza, 2014, 24(7):525-538.
doi: 10.1007/s00572-014-0572-9 URL |
[49] |
PURIN S, FILHO O K, STüRMER S L. Mycorrhizae activity and diversity in conventional and organic apple orchards from Brazil[J]. Soil biology & biochemistry, 2006, 38(7):1831-1839.
doi: 10.1016/j.soilbio.2005.12.008 URL |
[50] | WANG Q, LU H L, CHEN J Y, et al. Spatial distribution of glomalin-related soil protein and its relationship with sediment carbon sequestration across a mangrove forest[J]. Science of the total environment, 2018, 613(1):548-556. |
[51] | LIU H F, WANG X K, LIANG C T, et al. Glomalin-related soil protein affects soil aggregation and recovery of soil nutrient following natural revegetation on the Loess Plateau[J]. Geoderma, 2020, 357(1):113921-113921. |
[52] | SOUSA C D S, MENEZES R S C, SAMPAIO E V D S B, et al. Arbuscular mycorrhizal fungi within agroforestry and traditional land use systems in semi-arid northeast Brazil[J]. Acta scientiarum-agronomy, 2013, 35(3):307-314. |
[53] | SAIDI A, HUSIN E F, RASYIDIN A, et al. Selection of aruscular mycorrhizal fungi (AMF)indigeneus in ultisol for promoting the production of glmalin and aggregate formation processes[J]. International journal on advanced science engineering and information technology, 2014, 4(6):42-47. |
[54] | 刘润进. 菌根学[M]. 北京: 科学出版社, 2007. |
[55] |
WANG Q, WANG W, HE X, et al. Urbanization-induced glomalin changes and their associations with land-use configuration, forest characteristics, and soil properties in changchun, northeast China[J]. Journal of soils and sediments, 2019, 19(5):2433-2444.
doi: 10.1007/s11368-019-02266-x URL |
[56] |
WANG Q, WANG W, ZHONG Z, et al. Variation in glomalin in soil profiles and its association with climatic conditions, shelterbelt characteristics, and soil properties in poplar shelterbelts of northeast China[J]. Journal of forestry research, 2019, 31(1):279-290.
doi: 10.1007/s11676-019-00909-w URL |
[57] |
WANG W, ZHONG Z, WANG Q, et al. Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles[J]. Sci Rep, 2017, 7(1):13003.
doi: 10.1038/s41598-017-12731-7 URL |
[58] | 仲召亮, 王文杰, 王琼, 等. 松嫩平原农业区土壤理化性质与真菌代谢产物--球囊霉素相关土壤蛋白的关系[J]. 生态学杂志, 2015, 34(8):2274-2280. |
[1] | 陈和敏, 肖文芳, 陈和明, 吕复兵, 朱根发, 李宗艳, 李佐. 基于CiteSpace的兰花保鲜研究进展及可视化分析[J]. 中国农学通报, 2023, 39(1): 151-164. |
[2] | 王绍新, 王宝宝, 李中建, 许洛, 冯健英. 中国鲜食玉米的研究脉络和趋势探析[J]. 中国农学通报, 2023, 39(1): 8-15. |
[3] | 吴松, 周甜, 杨立宾, 江云兵, 潘虹, 刘永志, 杜君. 基于VOSviewer的叶际微生物研究现状可视化分析[J]. 中国农学通报, 2023, 39(1): 142-150. |
[4] | 马彪, 刘学录, 年丽丽, 李亮亮, 杨莹博. 2011—2020年土壤修复领域研究态势的文献计量分析[J]. 中国农学通报, 2022, 38(5): 143-151. |
[5] | 张晓晴, 李雅, 魏珊, 任大军, 张淑琴. 基于CiteSpace土壤重金属污染防治的知识图谱研究[J]. 中国农学通报, 2022, 38(4): 133-143. |
[6] | 王爱姣, 叶春蕾, 牛为民, 车发展. 2002—2022年国内外虎杖研究态势的文献计量分析[J]. 中国农学通报, 2022, 38(35): 134-140. |
[7] | 王琰, 胥美美, 单连慧, 苟欢, 童俞嘉, 安新颖. 基于文献专利计量的重大植物疫情领域态势分析[J]. 中国农学通报, 2022, 38(34): 144-154. |
[8] | 王洋, 张瑞, 周雨晴, 刘永昊, 刘高生, 戴其根. 基于文献计量的国内水稻耐盐性研究态势分析[J]. 中国农学通报, 2022, 38(31): 147-153. |
[9] | 杨睿哲, 陈兰兰, 刘雪健, 郑一鸣, 郑伟, 翟丙年, 王朝辉, 李紫燕. 基于文献计量学的农业生态荟萃分析的研究进展[J]. 中国农学通报, 2022, 38(31): 154-164. |
[10] | 吴宇炼, 范慧艳, 汪彦欣, 徐凯逸, 邵承媛. 植物免疫诱抗剂研究文献计量可视化分析[J]. 中国农学通报, 2022, 38(27): 138-146. |
[11] | 马笑, 张世浩, 张芬, 刘发波, 梁涛, 王孝忠, 陈新平. 基于Web of Science对蔬菜系统活性氮损失研究的文献计量分析[J]. 中国农学通报, 2022, 38(26): 124-132. |
[12] | 管宏友. 土壤污染防治研究的文献计量分析及可视化表达[J]. 中国农学通报, 2022, 38(26): 133-138. |
[13] | 陈莹, 吴繁琦, 耿业业, 白钰, 王桂荣, 杨慧婕, 孙志蓉. 基于文献计量学的根瘤固氮对豆科植物影响研究可视化分析[J]. 中国农学通报, 2022, 38(18): 35-43. |
[14] | 郑善枫, 王艳伟. 基于CiteSpace的改善中国农村人居环境研究综述[J]. 中国农学通报, 2022, 38(16): 155-164. |
[15] | 吴曼, 孟翠萍, 梁海燕, 杨丽玉, 吴琪, 慈敦伟, 郑永美, 李新国. 国内外根瘤菌研究的文献计量学分析[J]. 中国农学通报, 2022, 38(1): 155-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||