中国农学通报 ›› 2022, Vol. 38 ›› Issue (31): 154-164.doi: 10.11924/j.issn.1000-6850.casb2021-1011
所属专题: 生物技术; 现代农业发展与乡村振兴; 农业生态
• 农业信息·科技教育 • 上一篇
杨睿哲1(), 陈兰兰2, 刘雪健1, 郑一鸣1, 郑伟1, 翟丙年1, 王朝辉1, 李紫燕1(
)
收稿日期:
2021-10-25
修回日期:
2022-06-16
出版日期:
2022-11-05
发布日期:
2022-10-27
通讯作者:
李紫燕
作者简介:
杨睿哲,男,1998年出生,山西太原人,硕士研究生,主要从事大数据分析、西北旱地土壤培肥与健康研究。E-mail: 基金资助:
YANG Ruizhe1(), CHEN Lanlan2, LIU Xuejian1, ZHENG Yiming1, ZHENG Wei1, ZHAI Bingnian1, WANG Zhaohui1, LI Ziyan1(
)
Received:
2021-10-25
Revised:
2022-06-16
Online:
2022-11-05
Published:
2022-10-27
Contact:
LI Ziyan
摘要:
为了解荟萃分析在农业生态学科研中的发展和应用,提供相关研究参考,以“meta”作为关键词获取有效文献718篇,利用CiteSpace可视化软件和Web of Science(WOS)文献分析工具进行量化。结果表明,农业生态荟萃分析的国际发文总量呈显著增长;美国加州大学戴维斯分校、中国农业大学、中国科学院、中国农业科学院、荷兰瓦赫宁根大学在农业生态荟萃分析领域有较高的国际影响力。荟萃分析在农业生态的研究主题多样化,农田管理措施、土地利用方式变化、气候因子变化对生物多样性、温室气体等的生态环境效应评估和碳氮养分循环的动力学分析,以及不同生态系统之间的变化、互作差异比较等是现阶段的主要应用领域。荟萃分析作为农业生态学研究的重要工具,为大尺度综合性研究提供了验证假说和发展新理论的新途径,但目前简单荟萃研究仍难以完全满足实际工作需求,基于大数据融合、机器学习模型算法和专家知识评估等的综合荟萃分析将是未来研究的重点。
中图分类号:
杨睿哲, 陈兰兰, 刘雪健, 郑一鸣, 郑伟, 翟丙年, 王朝辉, 李紫燕. 基于文献计量学的农业生态荟萃分析的研究进展[J]. 中国农学通报, 2022, 38(31): 154-164.
YANG Ruizhe, CHEN Lanlan, LIU Xuejian, ZHENG Yiming, ZHENG Wei, ZHAI Bingnian, WANG Zhaohui, LI Ziyan. Agroecology Meta-analysis Based on Bibliometrics: A Review[J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 154-164.
排名 | 发文数量 | 中介中心性 | 机构名称 |
---|---|---|---|
1 | 16 | 0.22 | 美国加州大学戴维斯分校(University of California, Davis) |
2 | 16 | 0.06 | 中国农业大学(China Agricultural University) |
3 | 15 | 0.15 | 中国科学院(Chinese Academy Sciences) |
4 | 10 | 0.15 | 中国农业科学院(Chinese Academy Agricultural Sciences) |
5 | 9 | 0.45 | 荷兰瓦赫宁根大学(Wageningen University) |
6 | 9 | 0.13 | 瑞典农业科学院(Swedish University Agricultural Science) |
7 | 9 | 0.04 | 法国科学研究中心(Centre national de la recherche scientifique) |
8 | 8 | 0.19 | 西班牙科学研究最高委员会(Consejo Superior de Investigaciones científicas) |
9 | 8 | 0.06 | 丹麦奥尔胡斯大学(Aarhus University) |
10 | 8 | 0.005 | 法国国家农业科学研究院(French National Agriculture Research Institute) |
排名 | 发文数量 | 中介中心性 | 机构名称 |
---|---|---|---|
1 | 16 | 0.22 | 美国加州大学戴维斯分校(University of California, Davis) |
2 | 16 | 0.06 | 中国农业大学(China Agricultural University) |
3 | 15 | 0.15 | 中国科学院(Chinese Academy Sciences) |
4 | 10 | 0.15 | 中国农业科学院(Chinese Academy Agricultural Sciences) |
5 | 9 | 0.45 | 荷兰瓦赫宁根大学(Wageningen University) |
6 | 9 | 0.13 | 瑞典农业科学院(Swedish University Agricultural Science) |
7 | 9 | 0.04 | 法国科学研究中心(Centre national de la recherche scientifique) |
8 | 8 | 0.19 | 西班牙科学研究最高委员会(Consejo Superior de Investigaciones científicas) |
9 | 8 | 0.06 | 丹麦奥尔胡斯大学(Aarhus University) |
10 | 8 | 0.005 | 法国国家农业科学研究院(French National Agriculture Research Institute) |
排名 | 作者 | 国家 | 出版数 | 本地被引 频次 | H指数 | 总被引频次 | 最高引用论文(第一作者) | 发表时间 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Hedges L V | 美国 | 50 | 209 | 27 | 8830 | 《The meta-analysis of response ratios in experimental ecology》 | 1999 | |||
2 | Gurevitch J | 美国 | 27 | 175 | 19 | 7437 | 《Statistical issues in ecological meta-analyses》 | 1999 | |||
3 | Viechtbauer W | 荷兰 | 71 | 106 | 30 | 11178 | 《Conducting meta-analyses in R with the metafor package》 | 2010 | |||
4 | Borenstein M | 美国 | 12 | 89 | 6 | 2344 | 《A basic introduction to fixed-effect and random-effects models for meta-analysis》 | 2010 | |||
5 | Rosenberg M S | 美国 | 27 | 87 | 15 | 2076 | 《The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis》 | 2005 | |||
6 | Rosenthal R | 美国 | 24 | 75 | 14 | 5084 | 《Meta-analysis: Recent developments in quantitative methods for literature reviews》 | 2001 | |||
7 | Koricheva J | 英国 | 40 | 69 | 30 | 5021 | 《Regulation of woody plant secondary metabolism by resource availability: Hypothesis testing by means of meta-analysis》 | 1998 | |||
8 | Rustad L E | 美国 | 86 | 67 | 34 | 1611 | 《A meta-analysis of the response of soil respiration, net nitrogen mineralization and aboveground plant growth to experimental ecosystem warming》 | 2001 | |||
9 | Adams D C | 美国 | 5 | 59 | 5 | 679 | 《The file-drawer problem revisited: A general Resampling tests for meta-analysis of ecological data》 | 2005 | |||
10 | Lajeunesse M J | 加拿大 | 21 | 54 | 60 | 1277 | 《Host range and local parasite adaptation?》 | 1997 |
排名 | 作者 | 国家 | 出版数 | 本地被引 频次 | H指数 | 总被引频次 | 最高引用论文(第一作者) | 发表时间 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Hedges L V | 美国 | 50 | 209 | 27 | 8830 | 《The meta-analysis of response ratios in experimental ecology》 | 1999 | |||
2 | Gurevitch J | 美国 | 27 | 175 | 19 | 7437 | 《Statistical issues in ecological meta-analyses》 | 1999 | |||
3 | Viechtbauer W | 荷兰 | 71 | 106 | 30 | 11178 | 《Conducting meta-analyses in R with the metafor package》 | 2010 | |||
4 | Borenstein M | 美国 | 12 | 89 | 6 | 2344 | 《A basic introduction to fixed-effect and random-effects models for meta-analysis》 | 2010 | |||
5 | Rosenberg M S | 美国 | 27 | 87 | 15 | 2076 | 《The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis》 | 2005 | |||
6 | Rosenthal R | 美国 | 24 | 75 | 14 | 5084 | 《Meta-analysis: Recent developments in quantitative methods for literature reviews》 | 2001 | |||
7 | Koricheva J | 英国 | 40 | 69 | 30 | 5021 | 《Regulation of woody plant secondary metabolism by resource availability: Hypothesis testing by means of meta-analysis》 | 1998 | |||
8 | Rustad L E | 美国 | 86 | 67 | 34 | 1611 | 《A meta-analysis of the response of soil respiration, net nitrogen mineralization and aboveground plant growth to experimental ecosystem warming》 | 2001 | |||
9 | Adams D C | 美国 | 5 | 59 | 5 | 679 | 《The file-drawer problem revisited: A general Resampling tests for meta-analysis of ecological data》 | 2005 | |||
10 | Lajeunesse M J | 加拿大 | 21 | 54 | 60 | 1277 | 《Host range and local parasite adaptation?》 | 1997 |
排名 | 频数 | 中介中心性 | 关键词 |
---|---|---|---|
1 | 113 | 0.58 | 生物多样性(biodiversity) |
2 | 88 | 0.17 | 气候变化(climate change) |
3 | 56 | 0.21 | 免耕(no tillage) |
4 | 45 | 0.28 | 影响(impact) |
5 | 44 | 0.17 | 群落(community) |
6 | 38 | 0.46 | 有机碳(organic carbon) |
7 | 34 | 0.29 | 生物量(bioma) |
8 | 34 | 0.37 | 动力学(dynamics) |
9 | 34 | 0.36 | 物种丰富度(species richness) |
10 | 29 | 0.1 | 产量(yield) |
排名 | 频数 | 中介中心性 | 关键词 |
---|---|---|---|
1 | 113 | 0.58 | 生物多样性(biodiversity) |
2 | 88 | 0.17 | 气候变化(climate change) |
3 | 56 | 0.21 | 免耕(no tillage) |
4 | 45 | 0.28 | 影响(impact) |
5 | 44 | 0.17 | 群落(community) |
6 | 38 | 0.46 | 有机碳(organic carbon) |
7 | 34 | 0.29 | 生物量(bioma) |
8 | 34 | 0.37 | 动力学(dynamics) |
9 | 34 | 0.36 | 物种丰富度(species richness) |
10 | 29 | 0.1 | 产量(yield) |
聚类编号 | 聚类内节点数 | 同质性指数 | 平均年份 | 聚类标签 |
---|---|---|---|---|
0 | 15 | 0.887 | 2013 | species richness、consequence、community、habitat、pattern、land use、dispersal、establishment、trait、predation、file drawer problem、assemblage、vegetation、scale、biodiversity |
1 | 15 | 0.922 | 2010 | meta-analysis、fluctuating asymmetry、fitness、model、benefit、stomatal conductance、natural selection、photosynthesis、choice experiment、contingent valuation、ecosystem service、root、restoration、adoption、intensification |
2 | 11 | 0.787 | 2015 | management、productivity、soil organic carbon、cropping system、nitrogen、phosphorus、population、carbon sequestration、catch crop、cropland、use efficiency |
3 | 6 | 0.927 | 2017 | greenhouse gas emission、nitrous oxide、organic carbon、maize、conservation agriculture、manure |
4 | 10 | 0.847 | 2015 | bioma、no tillage、grassland、resilience、decomposition、pesticide、extinction、landscape、heterogeneity、fragmentation |
5 | 8 | 0.876 | 2017 | forest、adaptation、sequestration、selection、system、variability、matter、food |
6 | 6 | 0.747 | 2013 | temperature、ecology、meta-regression、environmental change、methane emission、nitrous oxide emission |
7 | 6 | 0.921 | 2013 | competition、dynamic、plant community、coexistence、chronosequence、soil erosion |
8 | 8 | 0.837 | 2012 | response、impact、climate change、growth、carbon、plant diversity、storage、fertilization |
9 | 5 | 0.941 | 2017 | agroecosystem、antioxidant activity、irrigation、quality、nutrient |
聚类编号 | 聚类内节点数 | 同质性指数 | 平均年份 | 聚类标签 |
---|---|---|---|---|
0 | 15 | 0.887 | 2013 | species richness、consequence、community、habitat、pattern、land use、dispersal、establishment、trait、predation、file drawer problem、assemblage、vegetation、scale、biodiversity |
1 | 15 | 0.922 | 2010 | meta-analysis、fluctuating asymmetry、fitness、model、benefit、stomatal conductance、natural selection、photosynthesis、choice experiment、contingent valuation、ecosystem service、root、restoration、adoption、intensification |
2 | 11 | 0.787 | 2015 | management、productivity、soil organic carbon、cropping system、nitrogen、phosphorus、population、carbon sequestration、catch crop、cropland、use efficiency |
3 | 6 | 0.927 | 2017 | greenhouse gas emission、nitrous oxide、organic carbon、maize、conservation agriculture、manure |
4 | 10 | 0.847 | 2015 | bioma、no tillage、grassland、resilience、decomposition、pesticide、extinction、landscape、heterogeneity、fragmentation |
5 | 8 | 0.876 | 2017 | forest、adaptation、sequestration、selection、system、variability、matter、food |
6 | 6 | 0.747 | 2013 | temperature、ecology、meta-regression、environmental change、methane emission、nitrous oxide emission |
7 | 6 | 0.921 | 2013 | competition、dynamic、plant community、coexistence、chronosequence、soil erosion |
8 | 8 | 0.837 | 2012 | response、impact、climate change、growth、carbon、plant diversity、storage、fertilization |
9 | 5 | 0.941 | 2017 | agroecosystem、antioxidant activity、irrigation、quality、nutrient |
[1] | 尹飞, 毛任钊, 傅伯杰, 等. 农田生态系统服务功能及其形成机制[J]. 应用生态学报, 2006(5):929-934. |
[2] | 牛书丽, 王松, 汪金松, 等. 大数据时代的整合生态学研究——从观测到预测[J]. 中国科学:地球科学, 2020, 50(10):1323-1338. |
[3] | 李萍, 郝兴宇, 宗毓铮, 等. 不同耕作措施对雨养冬小麦碳足迹的影响[J]. 中国生态农业学报, 2017, 25(6):839-847. |
[4] | 张恒恒, 严昌荣, 张燕卿, 等. 北方旱区免耕对农田生态系统固碳与碳平衡的影响[J]. 农业工程学报, 2015, 31(4):240-247 |
[5] |
STEWART Gavin. Meta-analysis in applied ecology[J]. Biology letters, 2010, 6(1):78-81.
doi: 10.1098/rsbl.2009.0546 pmid: 19776064 |
[6] |
LIU C, LU M, CUI J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis[J]. Global change biology, 2014, 20(5):1366-1381.
doi: 10.1111/gcb.12517 pmid: 24395454 |
[7] | 张薇, 倪邦, 许秀春, 等. 氮肥使用对北方夏玉米季氨挥发的影响[J]. 环境科学, 2020, 41(11):5176-5184. |
[8] |
TONG J H, HU J H, LU Z, et al. The impact of land use and cover change on soil organic carbon and total nitrogen storage in the Heihe River Basin: A meta-analysis[J]. Journal of geographical sciences, 2019, 29(9):1578-1594.
doi: 10.1007/s11442-019-1678-y |
[9] |
ELLERT B H, BETTANY J R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes[J]. Canadian journal of soil science, 1995, 75(4):529-538.
doi: 10.4141/cjss95-075 URL |
[10] |
LEE J, HOPMANS J W, ROLSTON D E, et al. Determining soil carbon stock changes: Simple bulk density corrections fail[J]. Agriculture ecosystems & environment, 2009, 134(3):251-256.
doi: 10.1016/j.agee.2009.07.006 URL |
[11] |
GÖRAN A, WOOSTER D. Meta-analysis: Synthesizing research findings in ecology and evolution[J]. Trends in ecology & evolution, 1995, 10(6):236-240.
doi: 10.1016/S0169-5347(00)89073-4 URL |
[12] | CURTIS P S. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide[J]. Plant cell & environment, 2010, 19(2):127-137. |
[13] | GLASS G V. Primary, secondary, and meta-analysis of research[J]. Educational researcher, 1976, 5(10):3-8. |
[14] |
MAESTRE F T, VALLADARES F, REYNOLDS J F. Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments[J]. Journal of ecology, 2010, 93(4):748-757.
doi: 10.1111/j.1365-2745.2005.01017.x URL |
[15] |
WALKER C L R. Competition and facilitation: A synthetic approach to interactions in plant communities[J]. Ecology, 1997, 78(7):1958-1965.
doi: 10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2 URL |
[16] |
FORRESTER D I, FORRESTER V. The balance between facilitation and competition in mixtures of Eucalyptus and Acacia changes as stands develop[J]. Oecologia, 2011, 166(1):265-272.
doi: 10.1007/s00442-011-1937-9 pmid: 21344256 |
[17] | 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2):242-253. |
[18] | 陈昱, 马子涵, 古洁灵, 等. 环境成本研究:合作、演进、热点及展望—基于CitespaceV的可视化分析[J]. 干旱区资源与环境, 2019, 33(6):11-22. |
[19] | 杨睿哲, 孙小妹, 李金霞, 等. 基于CiteSpace的草地生态系统研究现状分析[J]. 科技与创新, 2019(13):10-13. |
[20] |
YU G R, CHEN Z, ZHANG L M, et al. Recognizing the scientific mission of flux tower observation networks-lay the solid scientific data foundation for solving ecological issues related to global change[J]. Journal of resources and ecology, 2017, 8(2):115-120.
doi: 10.5814/j.issn.1674-764x.2017.02.001 URL |
[21] | 李鹏山. 农田系统生态综合评价及功能权衡分析研究[D]. 北京: 中国农业大学, 2017. |
[22] |
HEDGES L V, CURTIS G. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4):1150-1156.
doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 URL |
[23] |
GUREVITCH J. Statistical issues in ecological meta-analysis[J]. Ecology, 1999, 80(4):1142-1149
doi: 10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2 URL |
[24] | VIECHTBAUER W. Conducting meta-analyses in R with the metafor package[J]. Journal of statal software, 2010, 36(3):1-48. |
[25] |
BORENSTEIN M, HEDGES L V, HIGGINS J P, et al. A basic introduction to fixed-effect and random-effects models for meta-analysis[J]. Research synthesis methods, 2010, 1(2):97-111.
doi: 10.1002/jrsm.12 pmid: 26061376 |
[26] |
STERNE J A, GAVAGHAN D J, EGGER M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature[J]. Journal of clinical epidemiology, 2000, 53(11):1119-1129.
doi: 10.1016/s0895-4356(00)00242-0 pmid: 11106885 |
[27] |
ROSENBERG M S. The file-drawer problem revisited: A general weighted method for calculation fall-safe numbers in meta-analysis[J]. Evolution, 2005, 59(2):464-468.
doi: 10.1111/j.0014-3820.2005.tb01004.x URL |
[28] |
KORICHEVA J, LARSSON S, HAUKIOJA E, et al. Regulation of woody plant secondary metabolism by resource availability: Hypothesis testing by means of meta-analysis[J]. Oikos, 1998, 83(2):212-226.
doi: 10.2307/3546833 URL |
[29] |
RUSTAD L E, CAMPBELL J L, MARION G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4):543-562.
doi: 10.1007/s004420000544 URL |
[30] | CHEN C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the association for information science & technology, 2014, 57(3):359-377. |
[31] |
LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980[J]. Science, 2011, 333:616-620.
doi: 10.1126/science.1204531 pmid: 21551030 |
[32] |
RAY D K, GERBER J S, MACDONALD G K, et al. Climate variation explains a third of global crop yield variability[J]. Nature communications, 2015, 6:5989.
doi: 10.1038/ncomms6989 pmid: 25609225 |
[33] | IPCC. Summary for policymakers[A].// Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[C]. New York: Cambridge University Press, 2013:1-27. |
[34] | 刘树伟, 纪程, 邹建文. 陆地生态系统碳氮过程对大气CO2浓度升高的响应与反馈[J]. 南京农业大学学报, 2019, 42(5):781-786 |
[35] |
LIU S W, JI C, WANG C, et al. Climatic role of terrestrial ecosystem under elevated CO2: A bottom-up greenhouse gases budget[J]. Ecology letters, 2018, 21(7):1108-1118.
doi: 10.1111/ele.13078 URL |
[36] |
HUNGATE B A, STILING P D, DIJKSTRA P, et al. CO2 elicits long-term decline in nitrogen fixation[J]. Science, 2004, 304:1291-1291.
doi: 10.1126/science.1095549 URL |
[37] |
ZAK D R, PREGITZER K S, KING J S, et al. Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis[J]. New phytologist, 2000, 147(1):201-222
doi: 10.1046/j.1469-8137.2000.00687.x URL |
[38] |
LONG S P, AINSWORTH E A, ROGERS A, et al. Rising atmospheric carbon dioxide: plants FACE the future[J]. Annual review of plant biology, 2004, 55(1):591-628.
doi: 10.1146/annurev.arplant.55.031903.141610 URL |
[39] |
Van GROENIGEN K J, OSENBERG C W, HUNGATE B A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2[J]. Nature, 2011, 475:214-216.
doi: 10.1038/nature10176 URL |
[40] |
KORNER C. Plant CO2 responses: An issue of definition, time and resource supply[J]. New phytologist, 2006, 172(3):393-411
doi: 10.1111/j.1469-8137.2006.01886.x URL |
[41] |
NIKLAUS P A, ALPHEI J D, EBERSBERGER D, et al. Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of a nutrient-poor grassland[J]. Global change biology, 2003, 9(4):585-600.
doi: 10.1046/j.1365-2486.2003.00614.x URL |
[42] |
YUE K, FORNARA D A, YANG W Q, et al. Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common[J]. Ecology letters, 2017, 20(5):663-672.
doi: 10.1111/ele.12767 pmid: 28370812 |
[43] |
陈栋, 郁红艳, 邹路易, 等. 大气CO2浓度升高对不同层次水稻土有机碳稳定性的影响[J]. 应用生态学报, 2018, 29(8):2559-2565.
doi: 10.13287/j.1001-9332.201808.008 |
[44] |
KUZYAKOV Y, HORWATH W R, DORODNIKOV M, et al. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles[J]. Soil biology and biochemistry, 2019, 128:66-78.
doi: 10.1016/j.soilbio.2018.10.005 URL |
[45] |
QUAN Q, TIAN D, LUO Y, et al. Water scaling of ecosystem carbon cycle feedback to climate warming[J]. Science advances, 2019, 5(8):1131.
doi: 10.1126/sciadv.aav1131 pmid: 31457076 |
[46] |
LIN D, XIA J Y, WAN S Q. Climate warming and biomass accumulation of terrestrial plants: A meta-analysis[J]. New phytologist, 2010, 188(1):187-198.
doi: 10.1111/j.1469-8137.2010.03347.x pmid: 20609113 |
[47] | ALLEN C D, BRESHEARS D D, MCDOWELL N G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene[J]. Ecosphere, 2015, 6(8):129-129. |
[48] |
WALKER M D, WAHREN C H, HOLLISTER R D, et al. Plant community responses to experimental warming across the tundra biome[J]. Proceedings of the national academy of sciences, 2006, 103(5):1342-1346.
doi: 10.1073/pnas.0503198103 URL |
[49] |
GESTEL N V, SHI Z, GROENIGEN K V, et al. Predicting soil carbon loss with warming[J]. Nature, 2018, 554:E4-E5.
doi: 10.1038/nature25745 URL |
[50] |
BAI E, LI S, XU W, et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics[J]. New phytologist, 2013, 199(6):441-451.
doi: 10.1111/nph.12252 URL |
[51] | XUE K, YUAN M M, SHI Z, et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming[J]. Nature climate change, 2016(6):595-600. |
[52] |
ZHENG L, CHEN W, JIA S, et al. Temporal and spatial patterns of nitrogen wet deposition in different weather types in the Pearl River Delta(PRD), China[J]. Science of the total environment, 2020, 740:139936.
doi: 10.1016/j.scitotenv.2020.139936 URL |
[53] |
CROWTHER T W, TODD-BROWN K, ROWE C W, et al. Quantifying global soil carbon losses in response to warming[J]. Nature, 2016, 540:104-108.
doi: 10.1038/nature20150 URL |
[54] |
SCHRIJVER D A, FRENNE D P, AMPOORTER E, et al. Cumulative nitrogen input drives species loss in terrestrial ecosystems[J]. Global ecology and biogeography, 2011, 20(6):803-816.
doi: 10.1111/j.1466-8238.2011.00652.x URL |
[55] | LIU L, GREAVER T L. A global perspective on belowground carbon dynamics under nitrogen enrichment[J]. Ecology letters, 2010(13):819-828. |
[56] | ZHANG T A, LUO Y Q, HAN Y H, et al. Responses of litter decomposition and nutrient release to N addition: A meta-analysis of terrestrial ecosystems[J]. Applied soil ecology, 2018(128):35-42. |
[57] |
QI D, HUI D, DENNIS S, et al. Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis[J]. Global ecology and biogeography, 2017, 26(6):713-728.
doi: 10.1111/geb.12576 URL |
[58] |
MARKLEIN A R, HOULTON B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems[J]. New phytologist, 2012, 193(3):696-704.
doi: 10.1111/j.1469-8137.2011.03967.x pmid: 22122515 |
[59] |
STOCKER T. IPCC, 2013: Technical Summary. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[J]. Computational geometry, 2013, 18(2):95-123.
doi: 10.1016/S0925-7721(01)00003-7 URL |
[60] | FLEMING E L, JACKMAN C H, STOLARSKI R S, et al. A model study of the impact of source gas changes on the stratosphere for 1850-2100[J]. Atmospheric chemistry and physics, 2011, 11(16):8515-8541. |
[61] | 王晓云, 蔡焕杰, 李亮, 等. 亏缺灌溉对冬小麦农田温室气体排放的影响[J]. 环境科学, 2019, 40(5):2413-2425 |
[62] | LAL R. Sequestering carbon and increasing productivity by conservation agriculture[J]. Journal of soil & water conservation, 2015, 70(3):55A-62A. |
[63] | UNGER, PAUL W. Tillage effects on surface soil physical conditions and sorghum emergence[J]. Soilence society of America journal, 1984, 48(6):1423-1432. |
[64] | AZIMZADEH M, KOOCHEKI A, PALA M. 旱地条件下耕作和残茬管理对可持续谷物生产的影响[A].// 中国农业机械学会.中国机械化旱作节水农业国际研讨会[C]. 2000. |
[65] |
WEST T O, POST W M. Soil organic carbon sequestration rates by tillage and crop rotation[J]. Soil science society of America journal, 2002, 66(6):1930-1946.
doi: 10.2136/sssaj2002.1930 URL |
[66] |
LI Y, SONG D, LIANG S, et al. Effect of no-tillage on soil bacterial and fungal community diversity: A meta-analysis[J]. Soil and tillage research, 2020, 204:104721.
doi: 10.1016/j.still.2020.104721 URL |
[67] |
SUN Y, ZENG Y, SHI Q, et al. No-tillage controls on runoff: A meta-analysis[J]. Soil and tillage research, 2015, 153:1-6.
doi: 10.1016/j.still.2015.04.007 URL |
[68] | 王小彬, 武雪萍, 赵全胜, 等. 中国农业土地利用管理对土壤固碳减排潜力的影响[J]. 中国农业科学, 2011, 44(11):2284-2293. |
[69] | 刘文平, 宇振荣, 郧文聚, 等. 土地整治过程中农田防护林的生态景观设计[J]. 农业工程学报, 2012, 28(18):233-240. |
[70] |
FIENER P, AUERSWALD K, OOST K V. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments- A review[J]. Earth science reviews, 2011, 106(1-2):92-104.
doi: 10.1016/j.earscirev.2011.01.004 URL |
[71] | SCHERR S J, STHAPIT S. Mitigating climate change through food and land use[J]. Worldwatch paper, 2009(179):1-49. |
[72] | Food and Agriculture Organization. Options for Decision Makers. Expert Meeting on Climate Change Adaptation and Mitigation[Z]. FAO Headquarters,Rome, 2008. |
[73] | OLDEMAN L R. Issues of development of an international soils and terrain database[J]. Springer, Dordrecht, 1994:167-178. |
[74] | 史志华, 刘前进, 张含玉, 等. 近十年土壤侵蚀与水土保持研究进展与展望[J]. 土壤学报, 2020, 57(5):1117-1127. |
[75] | 雷相东, 彭长辉, 田大伦, 等. 整合分析方法及其在全球变化中的应用研究[J]. 科学通报, 2006(22):2587-2597. |
[76] |
LORENA G, LORTIE C J. Advancing plant ecology through meta-analyses[J]. Journal of ecology, 2014, 102(4):823-827.
doi: 10.1111/1365-2745.12264 URL |
[77] |
SIMON G. Review of methodology of quantitative reviews using meta-analysis in ecology[J]. Journal of animal ecology, 2002, 71(4):547-557.
doi: 10.1046/j.1365-2656.2002.00634.x URL |
[1] | 陈和敏, 肖文芳, 陈和明, 吕复兵, 朱根发, 李宗艳, 李佐. 基于CiteSpace的兰花保鲜研究进展及可视化分析[J]. 中国农学通报, 2023, 39(1): 151-164. |
[2] | 王绍新, 王宝宝, 李中建, 许洛, 冯健英. 中国鲜食玉米的研究脉络和趋势探析[J]. 中国农学通报, 2023, 39(1): 8-15. |
[3] | 马彪, 刘学录, 年丽丽, 李亮亮, 杨莹博. 2011—2020年土壤修复领域研究态势的文献计量分析[J]. 中国农学通报, 2022, 38(5): 143-151. |
[4] | 王爱姣, 叶春蕾, 牛为民, 车发展. 2002—2022年国内外虎杖研究态势的文献计量分析[J]. 中国农学通报, 2022, 38(35): 134-140. |
[5] | 王琰, 胥美美, 单连慧, 苟欢, 童俞嘉, 安新颖. 基于文献专利计量的重大植物疫情领域态势分析[J]. 中国农学通报, 2022, 38(34): 144-154. |
[6] | 吴宇炼, 范慧艳, 汪彦欣, 徐凯逸, 邵承媛. 植物免疫诱抗剂研究文献计量可视化分析[J]. 中国农学通报, 2022, 38(27): 138-146. |
[7] | 马笑, 张世浩, 张芬, 刘发波, 梁涛, 王孝忠, 陈新平. 基于Web of Science对蔬菜系统活性氮损失研究的文献计量分析[J]. 中国农学通报, 2022, 38(26): 124-132. |
[8] | 管宏友. 土壤污染防治研究的文献计量分析及可视化表达[J]. 中国农学通报, 2022, 38(26): 133-138. |
[9] | 金涛涛, 赵明, 毛洁莹, 罗天宇, 刘玮, 王琼. 基于CiteSpace的球囊霉素相关土壤蛋白知识图谱分析[J]. 中国农学通报, 2022, 38(24): 100-108. |
[10] | 陈莹, 吴繁琦, 耿业业, 白钰, 王桂荣, 杨慧婕, 孙志蓉. 基于文献计量学的根瘤固氮对豆科植物影响研究可视化分析[J]. 中国农学通报, 2022, 38(18): 35-43. |
[11] | 吴曼, 孟翠萍, 梁海燕, 杨丽玉, 吴琪, 慈敦伟, 郑永美, 李新国. 国内外根瘤菌研究的文献计量学分析[J]. 中国农学通报, 2022, 38(1): 155-164. |
[12] | 孙萌, 李荣田. 水稻蛋白质的研究热点可视化分析[J]. 中国农学通报, 2021, 37(28): 136-141. |
[13] | 徐扬, 吴志, 刘晓荣, 陈金峰, 韩庆斌, 刘平, 王佳友, 王代容. 基于Web of Science的人工湿地研究计量分析[J]. 中国农学通报, 2021, 37(25): 20-21. |
[14] | 熊鹰. 基于价值当量因子分析的四川省农业生态系统服务价值评价研究[J]. 中国农学通报, 2021, 37(2): 154-160. |
[15] | 柯志成, 连海峰, 何中声, 刘金福, 陈奕. 基于CiteSpace的格氏栲知识图谱分析[J]. 中国农学通报, 2021, 37(16): 156-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||