[11] |
LIANG W, CUI W, MA X, et al. Function of wheat Ta-UnP gene in enhancing salt tolerance in transgenic Arabidopsis and rice[J]. Biochemical and biophysical research communications, 2014, 450(1):794-801.
|
[12] |
EL MOUKHTARI A, CABASSA C, DURAND N, et al. Exogenous proline supply improves growth, antioxidant defense system, and nutrient homeostasis in salt-stressed alfalfa (Medicago sativa L.)[J/OL]. Journal of soil science and plant nutrition, https://link.springer.com/10.1007/s42729-025-02355-6. 2025-06-15.
|
[13] |
KIEGLE E, MOORE C A, HASELOFF J, et al. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root[J]. The plant journal, 2000, 23(2):267-278.
|
[14] |
QIU Q S, GUO Y, DIETRICH M A, et al. Regulation of SOS1, a plasma membrane Na+ /H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3[J]. Proceedings of the national academy of sciences, 2002, 99(12):8436-8441.
|
[15] |
FAROOQ M, PARK J R, JANG Y H, et al. Rice cultivars under salt stress show differential expression of genes related to the regulation of Na+/K+ balance[J]. Frontiers in plant science, 2021, 12:680131.
|
[16] |
LI J, SHEN L, HAN X, et al. Phosphatidic acid-regulated SOS2 controls sodium and potassium homeostasis in Arabidopsis under salt stress[J]. The embo journal, 2023, 42(8):e112401.
|
[17] |
ZHUANG Y, WEI M, LING C, et al. EGY3 mediates chloroplastic ROS homeostasis and promotes retrograde signaling in response to salt stress in Arabidopsis[J]. Cell reports, 2021, 36(2):109384.
|
[18] |
GUAN Q, TAKANO T, LIU S. Genetic transformation and analysis of rice OsAPx2 gene in Medicago sativa[J]. Plos one, 2012, 7(7):e41233.
|
[19] |
CAI S, CHEN G, WANG Y, et al. Evolutionary conservation of ABA signaling for stomatal closure[J]. Plant physiology, 2017, 174(2):732-747.
doi: 10.1104/pp.16.01848
pmid: 28232585
|
[20] |
UMEZAWA T, SUGIYAMA N, MIZOGUCHI M, et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis[J]. Proceedings of the national academy of sciences, 2009, 106(41):17588-17593.
|
[21] |
COLEBROOK E H, THOMAS S G, PHILLIPS A L, et al. The role of gibberellin signalling in plant responses to abiotic stress[J]. Journal of experimental biology, 2014, 217(1):67-75.
|
[22] |
ZHOU J, LI Z, XIAO G, et al. OsCYP71D8L as a key regulator involved in growth and stress response by mediating gibberellins homeostasis in rice[J]. Journal of experimental botany, 2020, 71(3):1160-1170.
|
[23] |
CHEN X, ZHANG X, JIA A, et al. Jasmonate mediates salt-induced nicotine biosynthesis in tobacco (Nicotiana tabacum L.)[J]. Plant diversity, 2016, 38(2):118-123.
|
[24] |
QIU Z, GUO J, ZHU A, et al. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress[J]. Ecotoxicology and environmental safety, 2014, 104:202-208.
doi: 10.1016/j.ecoenv.2014.03.014
pmid: 24726929
|
[25] |
KUROTANI K, HAYASHI K, HATANAKA S, et al. Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice[J]. Plant and cell physiology, 2015, 56(4):779-789.
|
[26] |
ZHAO Y, DONG W, ZHANG N, et al. A Wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling1[J]. Plant physiology, 2014, 164:1068-1076.
doi: 10.1104/pp.113.227595
pmid: 24326670
|
[27] |
CAO W H, LIU J, HE X J, et al. Modulation of ethylene responses affects plant salt-stress responses[J]. Plant physiology, 2007, 143(2):707-719.
|
[28] |
JIANG C, BELFIELD E J, CAO Y, et al. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis[J]. The plant cell, 2013, 25(9):3535-3552.
doi: 10.1105/tpc.113.115659
pmid: 24064768
|
[29] |
孙现军, 姜奇彦, 胡正, 等. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4):1132-1139.
doi: 10.3724/SP.J.1006.2023.21021
|
[30] |
SONG M, LU Q, MA H, et al. Quantitative trait loci mapping for salt tolerance-related traits during the germination stage of wheat[J]. Plos one, 2025, 20(4):e0319411.
|
[31] |
李冉, 韩洁楠, 上官小川, 等. 玉米苗期耐盐性鉴定技术研究及耐盐自交系筛选[J]. 植物遗传资源学报, 2024, 25(11):1882-1894.
|
[32] |
刘倩倩, 李冉, 周婷芳, 等. 211份玉米自交系萌发期耐盐性鉴定[J]. 作物杂志, 2024(4):62-70.
|
[33] |
刘梦红, 李逸, 李红宇, 等. 基于非线性主成分分析的北方粳稻苗期耐盐碱性综合评价[J]. 南方农业学报, 2022, 53(12):3380-3388.
|
[34] |
伊嘉雯, 冯棣, 朱崴, 等. 不同品种水稻发芽阶段耐盐性对比研究[J]. 中国农学通报, 2022, 38(33):10-14.
doi: 10.11924/j.issn.1000-6850.casb2022-0091
|
[35] |
刘欣玥, 郭潇阳, 王欣茹, 等. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8):2122-2130.
doi: 10.3724/SP.J.1006.2024.44006
|
[36] |
林峰, 赵慧艳, 史飞飞, 等. 大豆种质资源苗期耐盐鉴定及遗传多样性分析[J]. 植物资源遗传学报, 2024, 25(6):945-956.
|
[37] |
雷蕾, 孙世臣, 曹良子, 等. 利用高密度遗传图谱挖掘水稻芽期耐盐QTL[J]. 广东农业科学, 2024, 51(9):18-29.
|
[38] |
REDDY P S, RAMADOSS B R, TAMILSELVAN A, et al. Identification of QTL for seedling stage salinity tolerance in rice (Oryza sativa L.) using selective genotyping[J/OL]. Cereal research communications, https://link.springer.com/10.1007/s42976-025-00661-4. 2025-06-14.
|
[39] |
CHEN G, XUAN W, ZHAO P, et al. OsTUB1 confers salt insensitivity by interacting with Kinesin13A to stabilize microtubules and ion transporters in rice[J]. New phytologist, 2022, 235(5):1836-1852.
|
[40] |
YU J, ZHU C, XUAN W, et al. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice[J]. Nature communications, 2023, 14(1):3550.
doi: 10.1038/s41467-023-39167-0
pmid: 37321989
|
[41] |
YU C, WANG M, LI L, et al. TaPUB57 confers drought tolerance, governs grain size and salt sensitivity by ubiquitinating TaEXPB3 in rice[J]. Plant stress, 2025, 16:100877.
|
[42] |
JIA Z, ZENG T, GU L, et al. TaWRKY17 interacts with TaWRKY44 to promote expression of TaDHN7 for salt tolerance in wheat[J]. Plant, cell & environment, 2025, 48(3):1963-1976.
|
[43] |
WANG M, CHENG J, WU J, et al. Variation in TaSPL6-D confers salinity tolerance in bread wheat by activating TaHKT1;5-D while preserving yield-related traits[J]. Nature genetics, 2024, 56(6):1257-1269.
|
[1] |
FAO. Global map of salt- affected soils (GSASmap)[EB/OL]. https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/,2021.
|
[2] |
SMAIL A, TAKEDA S, NICK P. Life and death under salt stress: same players, different timing?[J]. Journal of experimental botany, 2014, 65(12):2963-2979.
doi: 10.1093/jxb/eru159
pmid: 24755280
|
[3] |
刘小京, 郭凯, 封晓辉, 等. 农业高效利用盐碱地资源探讨[J]. 中国生态农业学报(中英文版), 2023, 31(3):345-353.
|
[4] |
GONG Z. Plant abiotic stress: New insights into the factors that activate and modulate plant responses[J]. Journal of integrative plant biology, 2021, 63(3):429-430.
doi: 10.1111/jipb.13079
|
[5] |
FLOWERS T J, COLMER T D. Plant salt tolerance: adaptations in halophytes[J]. Annals of botany, 2015, 115(3):327-331.
pmid: 25844430
|
[6] |
GANIE S A, MOLLA K A, HENRY R J, et al. Advances in understanding salt tolerance in rice[J]. Theoretical and applied genetics, 2019, 132(4):851-870.
doi: 10.1007/s00122-019-03301-8
pmid: 30759266
|
[7] |
HAMEED A, AHMED M Z, HUSSAIN T, et al. Effects of salinity stress on chloroplast structure and function[J]. Cells, 2021, 10(8):2023.
|
[8] |
LIANG X, LI J, YANG Y, et al. Designing salt stress-resilient crops: current progress and future challenges[J]. Journal of integrative plant biology, 2024, 66(3):303-329.
doi: 10.1111/jipb.13599
|
[9] |
XIONG L, ZHU J K. Molecular and genetic aspects of plant responses to osmotic stress[J]. Plant, cell & environment, 2002, 25(2):131-139.
|
[10] |
SHRESTHA A, CUDJOE D K, KAMRUZZAMAN M, et al. Abscisic acid-responsive element binding transcription factors contribute to proline synthesis and stress adaptation in Arabidopsis[J]. Journal of plant physiology, 2021, 261:153414.
|
[44] |
ARSHAD K, WANG Y, HAN S, et al. GWAS on HTP -enabled dynamic traits unravels novel genetic architecture of salt tolerance in soybean[J]. The plant journal, 2025, 122(4):e70177.
|
[45] |
NI X, WANG Y, DAI L, et al. The transcription factor GmbZIP131 enhances soybean salt tolerance by regulating flavonoid biosynthesis[J/OL]. Plant physiology, 2025, https://doi.org/10.1093/plphys/kiaf092.
|
[46] |
LUO X, WANG B, GAO S, et al. Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings[J]. Journal of integrative plant biology, 2019, 61(6):658-674.
doi: 10.1111/jipb.12797
|
[47] |
LUO M, ZHANG Y, LI J, et al. Molecular dissection of maize seedling salt tolerance using a genome-wide association analysis method[J]. Plant biotechnology journal, 2021, 19(10):1937-1951.
doi: 10.1111/pbi.13607
pmid: 33934485
|
[48] |
WEI H, WANG X, ZHANG Z, et al. Uncovering key salt-tolerant regulators through a combined eQTL and GWAS analysis using the super pan-genome in rice[J]. National science review, 2024, 11(4):nwae043.
|
[49] |
DU F, WANG Y, WANG J, et al. The basic helix-loop-helix transcription factor gene, OsbHLH38, plays a key role in controlling rice salt tolerance[J]. Journal of integrative plant biology, 2023, 65(8):1859-1873.
|
[50] |
JIN T, SUN Y, SHAN Z, et al. Natural variation in the promoter of GsERD15B affects salt tolerance in soybean[J]. Plant biotechnology journal, 2021, 19(6):1155-1169.
doi: 10.1111/pbi.13536
pmid: 33368860
|
[51] |
WU H J, ZHANG Z, WANG J Y, et al. Insights into salt tolerance from the genome of Thellungiella salsuginea[J]. Proceedings of the national academy of sciences, 2012, 109(30):12219-12224.
|
[52] |
LIU J, ZHANG C, SUN H, et al. A natural variation in SlSCaBP8 promoter contributes to the loss of saline-alkaline tolerance during tomato improvement[J]. Horticulture research, 2024, 11(4):uhae055.
|
[53] |
GUAN R, QU Y, GUO Y, et al. Salinity tolerance in soybean is modulated by natural variation in GmSALT3[J]. The plant journal, 2014, 80(6):937-950.
doi: 10.1111/tpj.12695
pmid: 25292417
|
[54] |
QU Y, GUAN R, YU L, et al. Enhanced reactive oxygen detoxification occurs in salt‐stressed soybean roots expressing GmSALT3[J]. Physiologia plantarum, 2022, 174(3):e13709.
|
[55] |
NEFISSI OUERTANI R, ARASAPPAN D, ABID G, et al. Transcriptomic analysis of salt-stress-responsive genes in barley roots and leaves[J]. International journal of molecular sciences, 2021, 22(15):8155.
|
[56] |
LIU Q, KANG J, DU L, et al. Single-cell multiome reveals root hair‐specific responses to salt stress[J]. New phytologist, 2025, 246(6):2634-2651.
|
[57] |
ZHOU X, HUANG J, GAN Y, et al. Transcriptome mechanisms of tomato seedlings induced by low-red to far-red light ratio under calcium nitrate stress[J]. International journal of molecular sciences, 2023, 24(4):3738.
|
[58] |
WANG X, HE Y, WEI H, et al. A clock regulatory module is required for salt tolerance and control of heading date in rice[J]. Plant, cell & environment, 2021, 44(10):3283-3301.
|
[59] |
ZÖRB C, HERBST R, FORREITER C, et al. Short-term effects of salt exposure on the maize chloroplast protein pattern[J]. Proteomics, 2009, 9(17):4209-4220.
doi: 10.1002/pmic.200800791
pmid: 19688749
|
[60] |
PENG Z, WANG M, LI F, et al. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat[J]. Molecular & cellular proteomics, 2009, 8(12):2676-2686.
|
[61] |
AGHAEI K, EHSANPOUR A A, SHAH A H, et al. Proteome analysis of soybean hypocotyl and root under salt stress[J]. Amino acids, 2009, 36(1):91-98.
doi: 10.1007/s00726-008-0036-7
pmid: 18264660
|
[62] |
LI X J, YANG M F, ZHU Y, et al. Proteomic analysis of salt stress responses in rice shoot[J]. Journal of plant biology, 2011, 54(6):384-395.
|
[63] |
NAM M H, HUH S M, KIM K M, et al. Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice[J]. Proteome science, 2012, 10(1):25.
|
[64] |
LIU C, CHANG T, HSU Y, et al. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice[J]. Proteomics, 2014, 14(15):1759-1775.
|
[65] |
SHEN Q, YU J, FU L, et al. Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley[J]. Plant physiology and biochemistry, 2018, 123:319-330.
doi: S0981-9428(17)30433-3
pmid: 29289898
|
[66] |
SHEN Q, FU L, SU T, et al. Calmodulin HvCaM1 negatively regulates salt tolerance via modulation of HvHKT1s and HvCAMTA4[J]. Plant physiology, 2020, 183(4):1650-1662.
doi: 10.1104/pp.20.00196
pmid: 32554472
|
[67] |
SECOMANDI E, DE GREGORIO M A, CASTRO-CEGRÍ A, et al. Biochemical, photosynthetic and metabolomics insights of single and combined effects of salinity, heat, cold and drought in Arabidopsis[J]. Physiologia plantarum, 2025, 177(1):e70062.
|
[68] |
WANG W S, ZHAO X Q, LI M, et al. Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling[J]. Journal of experimental botany, 2016, 67(1):405-419.
|
[69] |
SUN Y, ZHOU Y, LONG Q, et al. OsBCAT2, a gene responsible for the degradation of branched-chain amino acids, positively regulates salt tolerance by promoting the synthesis of vitamin B5[J]. New phytologist, 2024, 241(6):2558-2574.
|
[70] |
SANTOSH KUMAR V V, VERMA R K, YADAV S K, et al. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010[J]. Physiology and molecular biology of plants, 2020, 26(6):1099-1110.
|
[71] |
ZHANG A, LIU Y, WANG F, et al. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene[J]. Molecular breeding, 2019, 39(3):47.
|
[72] |
ZHOU J, DENG K, CHENG Y, et al. CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice[J/OL]. Frontiers in plant science, http://journal.frontiersin.org/article/10.3389/fpls.2017.01598/full. 2025.
|
[73] |
CHEN X, JIANG X, SUN X, et al. Gene editing and overexpression of soybean miR396a reveals its role in salinity tolerance and development[J]. The crop journal, 2024, 12(6):1655-1665.
|
[74] |
ZHANG H, YU F, XIE P, et al. A Gγ protein regulates alkaline sensitivity in crops[J]. Science, 2023, 379(6638):eade8416.
|
[75] |
LUO H, WIN C S, LEE D H, et al. Microbacterium azadirachtae CNUC13 enhances salt tolerance in maize by modulating osmotic and oxidative stress[J]. Biology, 2024, 13(4):244.
|
[76] |
LI P S, KONG W L, WU X Q. Salt tolerance mechanism of the rhizosphere bacterium JZ-GX1 and its effects on tomato seed germination and seedling growth[J]. Frontiers in microbiology, 2021, 12: 657238.
|
[77] |
ZHENG Y, CAO X, ZHOU Y, et al. Purines enrich root-associated Pseudomonas and improve wild soybean growth under salt stress[J]. Nature communications, 2024, 15(1):3520.
doi: 10.1038/s41467-024-47773-9
pmid: 38664402
|
[78] |
WANG Y, SUN Q, LIU J, et al. Suaeda salsa root-associated microorganisms could effectively improve maize growth and resistance under salt stress[J]. Microbiology spectrum, 2022, 10(4):e01349-22.
|
[79] |
LU L, LIU N, FAN Z, et al. A novel PGPR strain, streptomyces lasalocidi JCM 3373T, alleviates salt stress and shapes root architecture in soybean by secreting indole-3-carboxaldehyde[J]. Plant, cell & environment, 2024, 47(6):1941-1956.
|
[80] |
BYRT C S, XU B, KRISHNAN M, et al. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat[J]. The plant journal, 2014, 80(3):516-526.
|
[81] |
KUMAR S, BEENA A S, AWANA M, et al. Salt-induced tissue-specific cytosine methylation downregulates expression of HKT genes in contrasting wheat (Triticum aestivum L.) genotypes[J]. DNA and cell biology, 2017, 36(4):283-294.
|
[82] |
ZHENG M, LIN J, LIU X, et al. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat[J]. Plant physiology, 2021, 186(4):1951-1969.
doi: 10.1093/plphys/kiab187
pmid: 33890670
|
[83] |
SHEN Y, NATALIA C E S, AUDONNET L, et al. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis[J/OL]. Frontiers in plant science, http://journal.frontiersin.org/article/10.3389/fpls.2014.00290/abstract. 2025-06-15.
|
[84] |
SHEN Y, CHI Y, LU S, et al. Involvement of JMJ15 in the dynamic change of genome-wide H3K4me3 in response to salt stress[J]. Frontiers in plant science, 2022, 13:1009723.
|
[85] |
WANG J, ZHENG L, PENG Y, et al. ZmKTF1 promotes salt tolerance by mediating RNA-directed DNA methylation in maize[J]. New phytologist, 2025, 245(1):200-214.
|
[86] |
WANG L, CAO S, WANG P, et al. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance[J/OL]. Proceedings of the national academy of sciences, 2021, 118(13), https://pnas.org/doi/full/10.1073/pnas.2023981118, 2025-07-07.
|
[87] |
YIN W, XIAO Y, NIU M, et al. ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice[J]. The plant cell, 2020, 32(7):2292-2306.
|