中国农学通报 ›› 2021, Vol. 37 ›› Issue (14): 141-149.doi: 10.11924/j.issn.1000-6850.casb2020-0295
所属专题: 植物保护
收稿日期:
2020-07-26
修回日期:
2020-09-30
出版日期:
2021-05-15
发布日期:
2021-05-19
通讯作者:
张杰,杨洪一
作者简介:
姬彦飞,男,1997年出生,山西晋城人,硕士在读,研究方向:微生物学。通信地址:150040 黑龙江省哈尔滨市香坊区和兴路26号 东北林业大学新逸夫楼生命科学学院,Tel:0451-82191737,E-mail: 基金资助:
Ji Yanfei(), Dong Xinxin, Tian Ye, Zhang Jie(), Yang Hongyi()
Received:
2020-07-26
Revised:
2020-09-30
Online:
2021-05-15
Published:
2021-05-19
Contact:
Zhang Jie,Yang Hongyi
摘要:
植物根际促生菌是一类可以显著提高植物生活力或植物抗病害能力的天然土壤细菌,除可经由多种途径促进植物的营养吸收与物质积累、提高植物的各项生长参数与生理生化指标外,其还可通过多种途径对植物病害加以防治。根际促生菌的生物防治活性依赖于其在植物根际的定殖,并经由特定生防活性物质的分泌、对植物系统抗性的诱导来加以实现。利用根际促生菌在植物根际的定殖,可对植物病害病原菌的生长造成抑制,这对于一些难以使用化学药剂进行防治的植物病害十分关键。本文论述了根际促生菌的生物防治机理,并探讨了将根际促生菌用作植物病害的生物防治剂的可能性,可为生态农业的发展提供了新思路。
中图分类号:
姬彦飞, 董欣欣, 田野, 张杰, 杨洪一. 根际促生菌的生防机理及用作生防制剂的潜能[J]. 中国农学通报, 2021, 37(14): 141-149.
Ji Yanfei, Dong Xinxin, Tian Ye, Zhang Jie, Yang Hongyi. PGPR: The Biological Control Mechanism and Potential as Biological Control Agent[J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 141-149.
生防菌株 | 菌株来源(根际) | 病原菌 | 参考文献 |
---|---|---|---|
Bacillus amyloliquefaciens | Triticum aestivum | Fusarium graminearum | |
Bipolaris sorokiniana | |||
Fusarium oxysporum | |||
Alternaria alternata | |||
Colletotrichum gloeosporioides | |||
Botryosphaeria ribis | [ | ||
Bacillus velezensis | Lycopersicum esculentum | Verticillium dahliae | [ |
Bacillus sp. | Lycopersicum esculentum | Fusarium oxysporum | |
Pythium aphanidermatum | |||
Colletotrichum capsici | |||
Sclerotium rolfsii | [ | ||
Pennisetum glaucum | Rhizoctonia solani | ||
Sclerotium rolfsii | |||
Fusarium solani | [ | ||
Zea mays | Pythium irregulare | ||
Aspergillus niger | |||
Fusarium solani | |||
Fusarium oxysporum | |||
Rhizoctonia solani | |||
Alternaria alternata | [ | ||
Pantoea dispersa | Ipomoea batatas | Ceratocystis fimbriata | [ |
Pestalootiopsis sp. | Photinia prionophylla | Aecidium pourthiaea | [ |
Pseudomonas fluorescens | Capsicum annuum | Botrytis cinerea | [ |
Staphylococcus equorum | Salicornia hispanica | Agrobacterium fabrum | [ |
Streptomyces sp. | Lycopersicum esculentum | Fusarium oxysporum | [ |
生防菌株 | 菌株来源(根际) | 病原菌 | 参考文献 |
---|---|---|---|
Bacillus amyloliquefaciens | Triticum aestivum | Fusarium graminearum | |
Bipolaris sorokiniana | |||
Fusarium oxysporum | |||
Alternaria alternata | |||
Colletotrichum gloeosporioides | |||
Botryosphaeria ribis | [ | ||
Bacillus velezensis | Lycopersicum esculentum | Verticillium dahliae | [ |
Bacillus sp. | Lycopersicum esculentum | Fusarium oxysporum | |
Pythium aphanidermatum | |||
Colletotrichum capsici | |||
Sclerotium rolfsii | [ | ||
Pennisetum glaucum | Rhizoctonia solani | ||
Sclerotium rolfsii | |||
Fusarium solani | [ | ||
Zea mays | Pythium irregulare | ||
Aspergillus niger | |||
Fusarium solani | |||
Fusarium oxysporum | |||
Rhizoctonia solani | |||
Alternaria alternata | [ | ||
Pantoea dispersa | Ipomoea batatas | Ceratocystis fimbriata | [ |
Pestalootiopsis sp. | Photinia prionophylla | Aecidium pourthiaea | [ |
Pseudomonas fluorescens | Capsicum annuum | Botrytis cinerea | [ |
Staphylococcus equorum | Salicornia hispanica | Agrobacterium fabrum | [ |
Streptomyces sp. | Lycopersicum esculentum | Fusarium oxysporum | [ |
[1] | 张亮, 盛浩, 袁红, 等. 根际促生菌防控土传病害的机理与应用进展[J]. 土壤通报, 2018,49(1):220-225. |
[2] | 张艺灿, 刘凤之, 王海波. 根际溶磷微生物促生机制研究进展[J]. 中国土壤与肥料, 2020: 7-15. |
[3] | Strange R N, Scott P R. Plant disease: a threat to global food security[J]. Annual Review of Phytopathology, 2005,43. |
[4] | Doehlemann G, Ökmen B, Zhu W, et al. Plant pathogenic fungi[J]. The Fungal Kingdom, 2017: 701-726. |
[5] |
Rahman S F S, Singh E, Pieterse C M J, et al. Emerging microbial biocontrol strategies for plant pathogens[J]. Plant Science, 2018,267:102-111.
doi: 10.1016/j.plantsci.2017.11.012 URL |
[6] |
Lugtenberg B J, Kamilova F. Plant-Growth-Promoting Rhizobacteria[J]. Annual Review of Microbiology, 2009,63(1):541-556.
doi: 10.1146/annurev.micro.62.081307.162918 URL |
[7] |
Tabassum B, Khan A, Tariq M, et al. Bottlenecks in commercialisation and future prospects of PGPR[J]. Applied Soil Ecology, 2017,121:102-117.
doi: 10.1016/j.apsoil.2017.09.030 URL |
[8] |
Degenhardt J, Gershenzon J, Baldwin I T, et al. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies[J]. Current Opinion in Biotechnology, 2003,14:169-176.
doi: 10.1016/S0958-1669(03)00025-9 URL |
[9] | Hida A, Oku S, Miura M, et al. Characterization of methyl-accepting chemotaxis proteins (MCPs) for amino acids in plant-growth-promoting rhizobacterium Pseudomonas protegens CHA0 and enhancement of amino acid chemotaxis by MCP genes overexpression[J].Bioscience Biotechnology and Biochemistry, 2020,undefined:1-10. |
[10] |
Xiong Y, Li X, Wang T, et al. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress[J]. Ecotoxicology and Environmental Safety, 2020,194:110374.
doi: 10.1016/j.ecoenv.2020.110374 URL |
[11] |
Ankati S, Podile A R. Metabolites in the root exudates of groundnut change during interaction with plant growth promoting rhizobacteria in a strain-specific manner[J]. Journal of Plant Physiology, 2019,243:153057.
doi: 10.1016/j.jplph.2019.153057 URL |
[12] | Molina L, Segura A, Duque E, et al. The versatility of Pseudomonas putida in the rhizosphere environment[J]. Advances in Applied Microbiology, 2020,110:149-180. |
[13] |
Khan N, Bano A. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions[J]. PLoS ONE, 2019,14:e0222302.
doi: 10.1371/journal.pone.0222302 URL |
[14] |
Wang D, Jiang C, Zhang L, et al. Biofilms Positively Contribute to Bacillus amyloliquefaciens 54-induced Drought Tolerance in Tomato Plants[J]. International Journal of Molecular Sciences, 2019,20(24):6271.
doi: 10.3390/ijms20246271 URL |
[15] | Khan A, Singh P, Srivastava A. Synjournal, nature and utility of universal iron chelator-Siderophore: A review[J]. Microbiological Research, 2018,212:103-111. |
[16] |
Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects[J]. Applied and Environmental Microbiology, 2005,71(9):4951-4959.
doi: 10.1128/AEM.71.9.4951-4959.2005 URL |
[17] |
Sheng M M, Jia H K, Zhang G Y, et al. Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans[J]. Journal of Microbiology and Biotechnology, 2020,30:689-699.
doi: 10.4014/jmb.1910.10066 pmid: 32160686 |
[18] |
Houšť J, Spížek J, Havlíček V. Antifungal Drugs[J]. Metabolites, 2020,10(3):106.
doi: 10.3390/metabo10030106 URL |
[19] |
He Z, Yang X. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils[J]. Journal of Zhejiang University Science B, 2007,8(3):192-207.
doi: 10.1631/jzus.2007.B0192 URL |
[20] |
Wang X, Wang C, Li Q, et al. Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil‐borne wheat diseases[J]. Journal of Applied Microbiology, 2018,125(6):1868-1880.
doi: 10.1111/jam.2018.125.issue-6 URL |
[21] | 李梦婕, 谢津, 李向楠, 等. 石楠锈孢锈菌重寄生现象及其重寄生菌的种类鉴定[J]. 东北林业大学学报, 2016,44(5):92-96. |
[22] |
Dutta S, Yu S M, Jeong S C, et al. High‐throughput analysis of genes involved in biocontrol performance of Pseudomonas fluorescens NBC275 against Gray mold[J]. Journal of Applied Microbiology, 2020,128(1):265-279.
doi: 10.1111/jam.14475 pmid: 31574191 |
[23] |
Hu X, Qin L, Roberts D P, et al. Characterization of mechanisms underlying degradation of sclerotia of Sclerotinia sclerotiorum by Aspergillus aculeatus Asp-4 using a combined qRT-PCR and proteomic approach[J]. BMC Genomics, 2017,18(1):674.
doi: 10.1186/s12864-017-4016-8 URL |
[24] |
Jiménez J A, Novinscak A, Filion M. Pseudomonas fluorescens LBUM677 differentially increases plant biomass, total oil content and lipid composition in three oilseed crops[J]. Journal of Applied Microbiology, 2020,128(4):1119-1127.
doi: 10.1111/jam.14536 pmid: 31793115 |
[25] |
Gupta V, Kumar G N, Buch A. Colonization by multi-potential Pseudomonas aeruginosa P4 stimulates peanut (Arachis hypogaea L.) growth, defence physiology and root system functioning to benefit the root-rhizobacterial interface[J]. Journal of Plant Physiology, 2020,248:153144.
doi: 10.1016/j.jplph.2020.153144 URL |
[26] | Guevara-Avendaño E, Bravo-Castillo K R, Monribot-Villanueva J L , et al. Diffusible and volatile organic compounds produced by avocado rhizobacteria exhibit antifungal effects against Fusarium kuroshium[J]. Brazilian Journal of Microbiology, 2020: 1-13. |
[27] |
Ebadzadsahrai G, Keppler E A H, Soby S D , et al. Inhibition of Fungal Growth and Induction of a Novel Volatilome in Response to Chromobacterium vaccinii Volatile Organic Compounds[J]. Frontiers in Microbiology, 2020,11:1035.
doi: 10.3389/fmicb.2020.01035 pmid: 32508802 |
[28] |
Massawe V C, Hanif A, Farzand A, et al. Volatile Compounds of Endophytic Bacillus spp. have Biocontrol Activity Against Sclerotinia sclerotiorum[J]. Phytopathology, 2018,108:1373-1385.
doi: 10.1094/PHYTO-04-18-0118-R URL |
[29] |
Abdal D A, Hossain M K, Lee S B, et al. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles[J]. International Journal of Molecular Sciences, 2017,18:120.
doi: 10.3390/ijms18010120 URL |
[30] |
Syed-Ab-Rahman S F, Carvalhais L C, Chua E T, et al. Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth[J]. Science of The Total Environment, 2019,692:267-280.
doi: 10.1016/j.scitotenv.2019.07.061 pmid: WOS:000484994700028 |
[31] |
Bloemberg G V, Lugtenberg B J J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria[J]. Current Opinion in Plant Biology, 2001,4(4):343-350.
doi: 10.1016/S1369-5266(00)00183-7 URL |
[32] |
Chen M, Wang J, Liu B, et al. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides[J]. BMC Microbiology, 2020,20:160.
doi: 10.1186/s12866-020-01851-2 URL |
[33] |
Yan F, Li C, Ye X, et al. Antifungal activity of lipopeptides from Bacillus amyloliquefaciens MG3 against Colletotrichum gloeosporioides in loquat fruits[J]. Biological Control, 2020,146:104281.
doi: 10.1016/j.biocontrol.2020.104281 URL |
[34] |
Dunlap C A, Bowman M J, Rooney A P. Bacillus subtilis Iturinic Lipopeptide Diversity in the Species Group - Important Antifungals for Plant Disease Biocontrol Applications[J]. Frontiers in Microbiology, 2019,10:1794.
doi: 10.3389/fmicb.2019.01794 URL |
[35] | Ben A D, Frikha-Gargouri O, Tounsi S. Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a[J]. Biological Control, 2018: S1049964418300422. |
[36] |
Chen X, Scholz R, Borriss M D, et al. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease[J]. Journal of Biotechnology, 2009,140(1):38-44.
doi: 10.1016/j.jbiotec.2008.10.015 URL |
[37] |
Han S, Song M, Keum Y. Effects of Azole Fungicides on Secreted Metabolomes of Botrytis cinerea[J]. Journal of Agricultural and Food Chemistry, 2020,68:5309-5317.
doi: 10.1021/acs.jafc.0c00696 URL |
[38] |
Morimura H, Ito M, Yoshida S, et al. In Vitro Assessment of Biocontrol Effects on Fusarium Head Blight and Deoxynivalenol (DON) Accumulation by DON-Degrading Bacteria[J]. Toxins (Basel), 2020,12:339.
doi: 10.3390/toxins12050339 URL |
[39] | Du N, Shi L, Yuan Y, et al. Proteomic Analysis Reveals the Positive Roles of the Plant-Growth-Promoting Rhizobacterium NSY50 in the Response of Cucumber Roots to Fusarium oxysporum f. sp. cucumerinum Inoculation[J]. Frontiers in Plant Science, 2016,7:1859. |
[40] | Simonetti E, Roberts I N, Montecchia M S, et al. A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth[J]. Microbiological Research, 2018: 50-59. |
[41] |
Yang X, Chen X, Song Z, et al. Antifungal, Plant Growth-Promoting, and Mycotoxin Detoxication Activities of Burkholderia sp. Strain XHY-12[J]. 3 Biotech, 2020,10:158.
doi: 10.1007/s13205-020-2112-y URL |
[42] | Liu J, Wang X, Zhang T, et al. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere[J]. Microbiological Research, 2017: 118-124. |
[43] |
Ji C, Fan Y, Zhao L. Review on biological degradation of mycotoxins[J]. Animal Nutrition, 2016,2(3):127-133.
doi: 10.1016/j.aninu.2016.07.003 URL |
[44] | Ruben S, Garbe E, Mogavero S, et al. Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans[J]. mBio, 2020,11:e00206-20. |
[45] |
Aqawi M, Gallily R, Sionov R V, et al. Cannabigerol Prevents Quorum Sensing and Biofilm Formation of Vibrio harveyi[J]. Frontiers in Microbiology, 2020,11:858.
doi: 10.3389/fmicb.2020.00858 pmid: 32457724 |
[46] |
Vega C, Rodríguez M, Llamas I, et al. Silencing of Phytopathogen Communication by the Halotolerant PGPR Staphylococcus equorum Strain EN21[J]. Microorganisms, 2019,8:42.
doi: 10.3390/microorganisms8010042 URL |
[47] |
Pawar S, Chaudhari A, Prabha R, et al. Microbial Pyrrolnitrin: Natural Metabolite with Immense Practical Utility[J]. Biomolecules, 2019,9:443.
doi: 10.3390/biom9090443 URL |
[48] |
Ye T, Zhou T, Fan X, et al. Acinetobacter lactucae Strain QL-1, a Novel Quorum Quenching Candidate Against Bacterial Pathogen Xanthomonas campestris Pv. Campestris[J]. Frontiers in Microbiology, 2019,10:2867.
doi: 10.3389/fmicb.2019.02867 URL |
[49] |
Rodríguez M, Torres M, Blanco L, et al. Plant growth-promoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by Pseudomonas segetis strain P6[J]. Scientific Reports, 2020,10:4121.
doi: 10.1038/s41598-020-61084-1 pmid: 32139754 |
[50] |
Leon A P, Plasencia J, Vazquezduran A, et al. Comparison of the In Vitro Antifungal and Anti-fumonigenic Activities of Copper and Silver Nanoparticles Against Fusarium verticillioides[J]. Journal of Cluster Science, 2020,31(1):213-220.
doi: 10.1007/s10876-019-01638-0 URL |
[51] |
Guo D, Yuan C, Luo Y, et al. Biocontrol of tobacco black shank disease (Phytophthora nicotianae) by Bacillus velezensis Ba168[J]. Pesticide Biochemistry and Physiology, 2020,165:104523.
doi: 10.1016/j.pestbp.2020.01.004 URL |
[52] |
Rashid M, Chung Y R. Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes[J]. Frontiers in Plant Science, 2017,8:1816.
doi: 10.3389/fpls.2017.01816 URL |
[53] | Noman A, Aqeel M, Irshad M K, et al. Elicitins as molecular weapons against pathogens: consolidated biotechnological strategy for enhancing plant growth[J].Critical Reviews in Biotechnology, 2020,undefined:1-12. |
[54] |
Kang X, Wang L, Guo Y, et al. A Comparative Transcriptomic and Proteomic Analysis of Hexaploid Wheat s Responses to Colonization by Bacillus velezensis and Gaeumannomyces graminis, Both Separately and Combined[J]. Molecular Plant-Microbe Interactions, 2019,32(10):1336-1347.
doi: 10.1094/MPMI-03-19-0066-R URL |
[55] |
Hashem A, Tabassum B, Abd-Allah E F. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress[J]. Saudi Journal of Biological Sciences, 2019,26(6):1291-1297.
doi: 10.1016/j.sjbs.2019.05.004 pmid: 31516360 |
[56] |
Venegas-Molina J, Proietti S, Pollier J, et al. Induced tolerance to abiotic and biotic stresses of broccoli and Arabidopsis after treatment with elicitor molecules[J]. Scientific Reports, 2020,10:10319.
doi: 10.1038/s41598-020-67074-7 pmid: 32587286 |
[57] |
Abbasi S, Safaie N, Sadeghi A, et al. Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms[J]. Frontiers in Microbiology, 2019,10:1505.
doi: 10.3389/fmicb.2019.01505 URL |
[58] |
Yuan M, Huang Y, Ge W, et al. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber[J]. BMC Genomics, 2019,20(1):1-13.
doi: 10.1186/s12864-018-5379-1 URL |
[59] | Dhouib H, Zouari I, Abdallah D B, et al. Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease[J]. Biological Control, 2019. |
[60] |
Amna, Xia Y, Farooq M A, et al. Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance[J]. Plant Physiology and Biochemistry, 2020,151:640-649.
doi: 10.1016/j.plaphy.2020.04.016 URL |
[61] |
Amaresan N, Jayakumar V, Kumar K, et al. Biocontrol and plant growth-promoting ability of plant-associated bacteria from tomato (Lycopersicum esculentum) under field condition[J]. Microbial Pathogenesis, 2019,136:103713.
doi: 10.1016/j.micpath.2019.103713 URL |
[62] |
Kushwaha P, Kashyap P L, Srivastava A K, et al. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet ( Pennisetum glaucum )[J]. Brazilian Journal of Microbiology, 2020,51(1):229-241.
doi: 10.1007/s42770-019-00172-5 pmid: WOS:000494186200001 |
[63] |
Santos M S, Nogueira M A, Hungria M. Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture[J]. AMB Express, 2019,9(1):205.
doi: 10.1186/s13568-019-0932-0 URL |
[64] |
Grossi C E M, Fantino E, Serral F, et al. Methylobacterium sp. 2A Is a Plant Growth-Promoting Rhizobacteria That Has the Potential to Improve Potato Crop Yield Under Adverse Conditions[J]. Frontiers in Plant Science, 2020,11:71.
doi: 10.3389/fpls.2020.00071 URL |
[65] |
Zhang J, Fu B, Lin Q, et al. Colonization of Beauveria bassiana 08F04 in root-zone soil and its biocontrol of cereal cyst nematode (Heterodera filipjevi)[J]. PLoS ONE, 2020,15:e0232770.
doi: 10.1371/journal.pone.0232770 URL |
[66] | Jiang L, Jeong J C, Lee J S, et al. Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato[J]. Scientific Reports, 2019,9(1):1-13. |
[67] | Montes-Osuna N, Mercado-Blanco J. Verticillium Wilt of Olive and its Control: What Did We Learn during the Last Decade?[J]. Plants (Basel), 2020,9. |
[68] | Liu G, Kong Y, Fan Y, et al. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria[J]. Journal of Biotechnology, 2017,249:20-24. |
[69] | Cai X C, Liu C H, Wang B T, et al. Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease[J]. Microbiological Research, 2017,196(Complete):89-94. |
[70] | Gislason, de Kievit. Friend or foe? Exploring the fine line between Pseudomonas brassicacearum and phytopathogens[J]. Journal of Medical Microbiology, 2020,69:347-360. |
[71] | Polcyn W, Paluchlubawa E, Lehmann T, et al. Arbuscular Mycorrhiza in Highly Fertilized Maize Cultures Alleviates Short-Term Drought Effects but Does Not Improve Fodder Yield and Quality[J]. Frontiers in Plant Science, 2019. |
[72] | Shao J, Li S, Zhang N, et al. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9[J]. Microbial Cell Factories, 2015,14(1):130. |
[73] | Godino A, Principe A, Fischer S. A ptsP deficiency in PGPR Pseudomonas fluorescens SF39a affects bacteriocin production and bacterial fitness in the wheat rhizosphere[J]. Research in Microbiology, 2016,167(3):178-189. |
[74] | Ali S, Hameed S, Imran A, et al. Genetic, physiological and biochemical characterization of Bacillus sp. strain RMB7 exhibiting plant growth promoting and broad spectrum antifungal activities[J]. Microbial Cell Factories, 2014,13(1):144. |
[75] | Kim J, Le K D, Yu N H, et al. Structure and antifungal activity of pelgipeptins from Paenibacillus elgii against phytopathogenic fungi[J]. Pesticide Biochemistry and Physiology, 2020: 154-163. |
[76] | Negash K H, Norris J K S, Hodgkinson J T. Siderophore-Antibiotic Conjugate Design: New Drugs for Bad Bugs?[J]. Molecules, 2019,24(18):3314. |
[1] | 胡帅, 罗立平, 孙猛, 杨禹, 温俊宝. 中华甲虫蒲螨和管氏肿腿蜂联合控制双条杉天牛初探[J]. 中国农学通报, 2023, 39(1): 107-111. |
[2] | 闫芳芳, 孔垂旭, 张映杰, 毛敏, 简连均, 王蓉. 产紫青霉对烟草根结线虫病的生物防治研究[J]. 中国农学通报, 2022, 38(33): 103-108. |
[3] | 申修贤, 田太安, 刘健锋, 于晓飞, 董祥立, 李治模, 杨茂发. 益蝽5龄若虫对不同龄期粘虫幼虫的捕食作用[J]. 中国农学通报, 2022, 38(3): 116-120. |
[4] | 符慧娟, 李星月, 易军, 李其勇, 许秉智, 陈友华, 罗聪聪, 张鸿. 四川丘区旱作主要生物灾害防治策略与技术[J]. 中国农学通报, 2022, 38(3): 140-147. |
[5] | 李小艳, 倪畅, 刘旭. 不同防治方法对设施黄瓜根结线虫的防治效果[J]. 中国农学通报, 2022, 38(25): 130-133. |
[6] | 刘龙, 荣华, 郑童童, 马俊杰, 郭庆元. 莫海威芽孢杆菌对梨腐烂病的抑菌防病效果[J]. 中国农学通报, 2022, 38(18): 140-146. |
[7] | 任春燕, 刘杰, 罗明华, 聂忠扬, 黄宁, 赵海燕, 唐良德. 天敌昆虫—蠋蝽的研究进展[J]. 中国农学通报, 2022, 38(12): 100-109. |
[8] | 邢起铭, 金文杰, 周利斌, 李文建, 刘瑞媛, 马建忠. 植物根际促生菌提高植物耐盐性的研究进展[J]. 中国农学通报, 2022, 38(11): 46-52. |
[9] | 徐明玉, 杜春梅. 柑橘青霉病防治的研究进展[J]. 中国农学通报, 2021, 37(9): 142-148. |
[10] | 陆秋成, 刘东阳, 王勇, 徐金兰, 江连强, 刘超, 蔡鹏, 李跃建, 何恒果, 蒲德强. 不同胡萝卜素浓度及饲料制作方法对七星瓢虫幼虫的影响[J]. 中国农学通报, 2021, 37(35): 82-87. |
[11] | 杨冰, 平原, 杜春梅. 马铃薯疮痂病的致病机制及防治研究进展[J]. 中国农学通报, 2021, 37(18): 131-137. |
[12] | 沈艳, 何鹏搏, 何鹏飞, 吴毅歆, 孔宝华, 李兴玉, Shahzad Munir, 何月秋. 番茄产后灰霉病的病原鉴定及生物防治[J]. 中国农学通报, 2021, 37(13): 102-107. |
[13] | 宋丽丽, 丛林, 张燕如, 赵婷婷, 金树磊, 王雁群, 韩杰, 李资聪. 豆科种实害虫生物防治研究进展[J]. 中国农学通报, 2021, 37(10): 113-120. |
[14] | 徐雪亮, 刘子荣, 曾绍民, 刘小娟, 范会云, 黄衍章, 姚英娟, 王奋山. 5种生物药剂防治马铃薯主要病害田间药效试验[J]. 中国农学通报, 2020, 36(9): 122-126. |
[15] | 曹巧, 高振贤, 单子龙, 傅晓艺, 史占良, 何明琦, 韩然. 河北省小麦主要气传病害发生现状及防控对策[J]. 中国农学通报, 2020, 36(6): 100-105. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||