中国农学通报 ›› 2021, Vol. 37 ›› Issue (18): 131-137.doi: 10.11924/j.issn.1000-6850.casb2020-0454
收稿日期:
2020-09-11
修回日期:
2020-12-18
出版日期:
2021-06-25
发布日期:
2021-07-13
通讯作者:
杜春梅
作者简介:
杨冰,女,1996年出生,黑龙江鹤岗人,研究生,研究方向:微生物资源挖掘与利用。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学生命科学学院501室,Tel:0451-86609134,E-mail: 基金资助:
Yang Bing1,2(), Ping Yuan1,2, Du Chunmei1,2()
Received:
2020-09-11
Revised:
2020-12-18
Online:
2021-06-25
Published:
2021-07-13
Contact:
Du Chunmei
摘要:
致病性疮痂链霉菌(Streptomyces scabies)引发的马铃薯疮痂病是世界范围内广泛存在的土传细菌性病害,难以防治。为了制定更有效的防治策略和开发新型药剂,使其得到更有效的控制,本文归纳了S. scabie产生的致病毒素thaxtomins和植物激素(细胞分裂素、生长素和乙烯)对S. scabies致病进程的影响;总结了防治马铃薯疮痂病所采用的主要化学药剂、农业技术手段和微生物源制剂,并分析了各种防治方法的优缺点。指出深入探究马铃薯疮痂病的致病机制对开发新型马铃薯疮痂病防治剂具有重要意义,微生物复合菌剂的研发和应用是今后防控马铃薯疮痂病的重要方向,认为将化学防治、农业措施与复合微生物菌剂三者联用能更好的防控该病害的发生和危害,对马铃薯产业的可持续发展具有重要意义。
中图分类号:
杨冰, 平原, 杜春梅. 马铃薯疮痂病的致病机制及防治研究进展[J]. 中国农学通报, 2021, 37(18): 131-137.
Yang Bing, Ping Yuan, Du Chunmei. Pathogenic Mechanism and Control Method of Potato Scab: Research Progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 131-137.
[1] | Majeed A, Muhammad Z, Ullah Z, et al. Late blight of potato (Phytophthora infestans) I: fungicides application and associated challenges[J]. Food Science and Technology, 2017,5(3):261-266. |
[2] | Majeed A, Muhammad Z. Potato production in Pakistan: challenges and prospective management strategies-A review[J]. Pakistan Journal of Botany, 2018,50(5):2077-2084. |
[3] |
Majeed A, Muhammad Z. An overview of the common bacterial diseases of potato in Pakistan, associated crop losses and control stratagems[J]. Journal of Plant Pathology, 2020,102(1):3-10.
doi: 10.1007/s42161-019-00362-y URL |
[4] | 李智媛. 黑龙江省马铃薯疮痂病综合防控技术[J]. 黑龙江农业科学, 2019(9):156-157. |
[5] | Lankau E W, Xue D, Chrisensen R, et al. Management and soil conditions influence common scab severity on potato tubers via indirect effects on soil microbial communities[J]. Phytopathology, 2020,110(5):1-32. |
[6] |
Leiminger J, Frank M, Wenk C, et al. Distribution and characterization of Streptomyces species causing potato common scab in Germany[J]. Plant Pathology, 2013,62(3):611-623.
doi: 10.1111/ppa.2013.62.issue-3 URL |
[7] |
Hiltunen L H, Kelloniemi J, Valkonen J P T, et al. Repeated applications of a nonpathogenic Streptomyces strain enhance development of suppressiveness to potato common scab[J]. Plant Disease, 2017,101(1):224-232.
doi: 10.1094/PDIS-07-16-1020-RE URL |
[8] |
Santos-Cervantes M E, Felix-Gastelum R, Herrera-Rodríguez G, et al. Characterization, pathogenicity and chemical control of Streptomyces acidiscabies associated to potato common scab[J]. American Journal of Potato Research, 2017,94(1):14-25.
doi: 10.1007/s12230-016-9541-5 URL |
[9] | Johansen T J, Dees M W, Hermansen A. High soil moisture reduces common scab caused by Streptomyces turgidiscabies and Streptomyces europaeiscabiei in potato[J]. Acta Agriculturae Scandinavica, 2015,65(3):193-198. |
[10] |
Chen S F, Zhang M S, Wang J Y, et al. Biocontrol effects of Brevibacillus laterosporus AMCC100017 on potato common scab and its impact on rhizosphere bacterial communities[J]. Biological Control, 2017,106:89-98.
doi: 10.1016/j.biocontrol.2017.01.005 URL |
[11] | 李爽, 杨美军, 张云, 等. 马铃薯疮痂病研究进展[J]. 中国马铃薯, 2018,32(04):240-248. |
[12] |
Healy F G, Wach M, Krasnoff S B, et al. The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity[J]. Molecular Microbiology, 2010,38(4):794-804.
doi: 10.1046/j.1365-2958.2000.02170.x URL |
[13] | Li Y, Liu J, Diaz C, et al. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review[J]. Micbiogology, 2019,165(10):1025-1040. |
[14] |
Padilla-Reynaud R, Simao-Beaunoir A M, Lerat S,, et al. Suberin regulates the production of cellulolytic enzymes in Streptomyces scabiei, the causal agent of potato common scab[J]. Microbes and Environments, 2015,30(3):245-253.
doi: 10.1264/jsme2.ME15034 pmid: 26330095 |
[15] |
Joshi M V, Bignell D R D, Johnson E G, et al. The AraC/XylS regulator TxtR modulates thaxtomin biosynjournal and virulence in Streptomyces scabies[J]. Molecular Microbiology, 2010,66(3):633-642.
doi: 10.1111/mmi.2007.66.issue-3 URL |
[16] |
Lerat S, Simao-Beaunoir A M, Beaulieu C. Genetic and physiological determinants of Streptomyces scabies pathogenicity[J]. Molecular Plant Pathology, 2009,10(5):579-585.
doi: 10.1111/mpp.2009.10.issue-5 URL |
[17] |
Volker B, Jane C S, Shuang W, et al. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings[J]. Journal of Experimental Botany, 2009,60(3):955-965.
doi: 10.1093/jxb/ern344 URL |
[18] |
Scheible W R, Fry B, Kochevenko A, et al. An Arabidopsis mutant resistant to thaxtomin A, a cellulose synjournal inhibitor from Streptomyces species[J]. The Plant Cell, 2003,15(8):1781-1794.
doi: 10.1105/tpc.013342 URL |
[19] |
Lerat S, Babana A H, Oirdi M E, et al. Streptomyces scabiei and its toxin thaxtomin A induce scopoletin biosynjournal in tobacco and Arabidopsis thaliana[J]. Plant Cell Reports, 2009,28(12):1895-1903.
doi: 10.1007/s00299-009-0792-1 URL |
[20] |
Liang F, Lin R, Yao Y, et al. Systematic identification of pathogenic Streptomyces sp. AMCC400023 that causes common scab and genomic analysis of its pathogenicity island[J]. Phytopathology, 2019,109(7):1115-1128.
doi: 10.1094/PHYTO-07-18-0266-R URL |
[21] |
Guan D, Grau B L, Clark C A, et al. Evidence that thaxtomin C is a pathogenicity determinant of Streptomyces ipomoeae, the causative agent of Streptomyces soil rot disease of sweet potato[J]. Molecular plant-microbe interactions, 2012,25(3):393-401.
doi: 10.1094/MPMI-03-11-0073 URL |
[22] |
Barry S M, Kers J A, Johnson E G, et al. Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynjournal[J]. Nature Chemical Biology, 2012,8(10):814-816.
doi: 10.1038/nchembio.1048 URL |
[23] | Braun S, Gevens A, Charkowski A, et al. Potato common scab: A review of the causal pathogens, management practices, varietal resistance screening methods, and host resistance[J]. American Potato Research, 2017,94(12):283-296. |
[24] | Cullen D W, Lees A K. Detection of the nec1 virulence gene and its correlation with pathogenicity in Streptomyces species on potato tubers and in soil using conventional and real-time PCR[J]. Journal of Applied Microbiology, 2007,102(4):1082-1094. |
[25] |
Kers J A, Cameron K D, Joshi M V, et al. A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species[J]. Molecular Microbiology, 2010,55(4):1025-1033.
doi: 10.1111/j.1365-2958.2004.04461.x URL |
[26] |
Hiltunen L H, Weckman A, Ylhinen A, et al. Responses of potato cultivars to the common scab pathogens, Streptomyces scabies and S. turgidiscabies[J]. Annals of Applied Biology, 2015,146(3):395-403.
doi: 10.1111/aab.2005.146.issue-3 URL |
[27] |
Joshi M V, Loria R. Streptomyces turgidiscabies possesses a functional cytokinin biosynthetic pathway and produces leafy galls[J]. Molecular plant-microbe interactions, 2007,20(7):751-758.
doi: 10.1094/MPMI-20-7-0751 URL |
[28] |
Legault G S, Lerat S, Nicolas P, et al. Tryptophan regulates thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and modifies its interactions with radish seedlings[J]. Phytopathology, 2011,101(9):1045-1051.
doi: 10.1094/PHYTO-03-11-0064 URL |
[29] |
Patten C L, Blakney A J C, Coulson T J D. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria[J]. Critical Reviews in Microbiology, 2013,39(4):395-415.
doi: 10.3109/1040841X.2012.716819 URL |
[30] |
Weingart H, Ullrich H, Geider K, et al. The role of ethylene production in virulence of Pseudomonas syringae pvs. glycinea and phaseolicola[J]. Phytopathology, 2001,91(5):511-518.
doi: 10.1094/PHYTO.2001.91.5.511 pmid: 18943596 |
[31] |
Tegg R S, Corkrey R, Wilson C R. Relationship between the application of foliar chemicals to reduce common scab disease of potato and correlation with thaxtomin A toxicity[J]. Plant Disease, 2012,96(1):97-103.
doi: 10.1094/PDIS-05-11-0397 URL |
[32] |
Clarke C R, Tegg R S, Thompson H K, et al. Low-dose foliar treatments of the auxin analog 2,4-D reduce potato common scab and powdery scab for multiple potato cultivars and enhance root development[J]. Crop Protection, 2020,136:105208.
doi: 10.1016/j.cropro.2020.105208 URL |
[33] |
Hosny M, Abo-Elyousr K A M, Asran M R, et al. Chemical control of potato common scab disease under field conditions[J]. Archives of Phytopathology and Plant Protection, 2014,47(1):2193-2199.
doi: 10.1080/03235408.2013.870375 URL |
[34] | Lindsey A P J, Murugan S, Renitta R E. Microbial disease management in agriculture: Current status and future prospects[J]. Biocatalysis and Agricultural Biotechnology, 2020,23(10):1-32. |
[35] |
Larkin R P, Griffin T S, Honeycutt C W. Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities[J]. Plant Disease, 2010,94(12):1491-1502.
doi: 10.1094/PDIS-03-10-0172 URL |
[36] |
Sakuma F, Maeda M, Takahashi M, et al. Suppression of common scab of potato caused by Streptomyces turgidiscabies using lopsided oat green manure[J]. Plant Disease, 2011,95(9):1124-1130.
doi: 10.1094/PDIS-08-10-0615 URL |
[37] |
Larkin R P, Griffin T S. Control of soilborne potato diseases using brassica green manures[J]. Crop Protection, 2007,26(7):1067-1077.
doi: 10.1016/j.cropro.2006.10.004 URL |
[38] |
Dees M W, Wanner L A. In search of better management of potato common scab[J]. Potato Research, 2012,55(3-4):249-268.
doi: 10.1007/s11540-012-9206-9 URL |
[39] | Cui L X, Yang C D, Wei L J, et al. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab[J]. Biological Control, 2019,141(19):1-20. |
[40] |
Meng Q X, Hanson L E, Douches D, et al. Managing scab diseases of potato and radish caused by Streptomyces spp. using Bacillus amyloliquefaciens BAC03 and other biomaterials[J]. Biological Control, 2013,67(3):373-379.
doi: 10.1016/j.biocontrol.2013.09.009 URL |
[41] |
Singhai P K, Sarma B K, Srivastava J S. Biological management of common scab of potato through Pseudomonas species and vermicompost[J]. Biological Control, 2011,57(2):150-157.
doi: 10.1016/j.biocontrol.2011.02.008 URL |
[42] |
Arseneault T, Roquigny R, Novinscak A, et al. Phenazine-1-carboxylic acid-producing Pseudomonas synxantha LBUM223 alters the transcriptome of Streptomyces scabies, the causal agent of potato common scab[J]. Physiological and Molecular Plant Pathology, 2020,110:101480.
doi: 10.1016/j.pmpp.2020.101480 URL |
[43] |
Julie B, Clermont N, Beaulieu C. Effect of Streptomyces melanosporofaciens strain EF-76 and of chitosan on common scab of potato[J]. Plant and Soil, 2003,256(2):463-468.
doi: 10.1023/A:1026177714855 URL |
[44] |
Zhang X Y, Li C, Hao J J, et al. A novel Streptomyces sp. strain PBSH9 for controlling potato common scab caused by Streptomyces galilaeus[J]. Plant disease, 2020,104(7):430-439.
doi: 10.1094/PDIS-03-19-0659-RE URL |
[45] |
Sarwar A, Latif Z, Zhang S Y, et al. A potential biocontrol agent Streptomyces violaceusniger AC12AB for managing potato common scab[J]. Frontiers in Microbiology, 2019,10(2) 1-10.
doi: 10.3389/fmicb.2019.00001 URL |
[46] |
Arslan S, Zakia L, Songya Z, et al. Biological control of potato common scab with rare Isatropolone C compound produced by plant growth promoting Streptomyces A1RT[J]. Frontiers in Microbiology, 2018,9(1):1126-1130.
doi: 10.3389/fmicb.2018.01126 URL |
[47] | Muhammad R, Aftab B. Evaluation of different antagonistic fungi against common scab of potato[J]. Mycopathologia, 2014,12(1):63-67. |
[48] | 翟一军, 徐霞, 廖晓兰. 拮抗细菌与其他生防因子复配防治植物病害研究进展[J]. 微生物学杂志, 2012,32(3):72-75. |
[49] |
Wang Z S, Li Y, Zhuang L B, et al. A rhizosphere-derived consortium of Bacillus subtilis and Trichoderma harzianum suppresses common scab of potato and increases yield[J]. Computational and Structural Biotechnology Journal, 2019,17(5):645-653.
doi: 10.1016/j.csbj.2019.05.003 URL |
[50] |
Larkin R P. Biological control of soilborne diseases in organic potato production using hypovirulent strains of Rhizoctonia solani[J]. Biological Agriculture and Horticulture, 2020,36(2):119-129.
doi: 10.1080/01448765.2019.1706636 URL |
[1] | 胡帅, 罗立平, 孙猛, 杨禹, 温俊宝. 中华甲虫蒲螨和管氏肿腿蜂联合控制双条杉天牛初探[J]. 中国农学通报, 2023, 39(1): 107-111. |
[2] | 曾端香, 余曦玥, 于敬文, 贾建平, 彭德良, 黄文坤. 松材线虫病的检测及综合防治技术[J]. 中国农学通报, 2022, 38(4): 86-91. |
[3] | 闫芳芳, 孔垂旭, 张映杰, 毛敏, 简连均, 王蓉. 产紫青霉对烟草根结线虫病的生物防治研究[J]. 中国农学通报, 2022, 38(33): 103-108. |
[4] | 申修贤, 田太安, 刘健锋, 于晓飞, 董祥立, 李治模, 杨茂发. 益蝽5龄若虫对不同龄期粘虫幼虫的捕食作用[J]. 中国农学通报, 2022, 38(3): 116-120. |
[5] | 符慧娟, 李星月, 易军, 李其勇, 许秉智, 陈友华, 罗聪聪, 张鸿. 四川丘区旱作主要生物灾害防治策略与技术[J]. 中国农学通报, 2022, 38(3): 140-147. |
[6] | 宋晓兵, 黄峰, 罗小玲, 林培华, 彭埃天, 凌金锋, 崔一平. 吡唑醚菌酯对两种优稀水果病原菌的毒力测定及田间防治效果[J]. 中国农学通报, 2022, 38(27): 125-128. |
[7] | 李小艳, 倪畅, 刘旭. 不同防治方法对设施黄瓜根结线虫的防治效果[J]. 中国农学通报, 2022, 38(25): 130-133. |
[8] | 刘龙, 荣华, 郑童童, 马俊杰, 郭庆元. 莫海威芽孢杆菌对梨腐烂病的抑菌防病效果[J]. 中国农学通报, 2022, 38(18): 140-146. |
[9] | 任春燕, 刘杰, 罗明华, 聂忠扬, 黄宁, 赵海燕, 唐良德. 天敌昆虫—蠋蝽的研究进展[J]. 中国农学通报, 2022, 38(12): 100-109. |
[10] | 罗振亚, 林少源, 全林发, 池艳艳, 陈炳旭, 徐淑. 6种杀虫剂对广东玉米草地贪夜蛾的田间应用评价[J]. 中国农学通报, 2022, 38(12): 124-130. |
[11] | 徐明玉, 杜春梅. 柑橘青霉病防治的研究进展[J]. 中国农学通报, 2021, 37(9): 142-148. |
[12] | 陆秋成, 刘东阳, 王勇, 徐金兰, 江连强, 刘超, 蔡鹏, 李跃建, 何恒果, 蒲德强. 不同胡萝卜素浓度及饲料制作方法对七星瓢虫幼虫的影响[J]. 中国农学通报, 2021, 37(35): 82-87. |
[13] | 姬彦飞, 董欣欣, 田野, 张杰, 杨洪一. 根际促生菌的生防机理及用作生防制剂的潜能[J]. 中国农学通报, 2021, 37(14): 141-149. |
[14] | 沈艳, 何鹏搏, 何鹏飞, 吴毅歆, 孔宝华, 李兴玉, Shahzad Munir, 何月秋. 番茄产后灰霉病的病原鉴定及生物防治[J]. 中国农学通报, 2021, 37(13): 102-107. |
[15] | 宋丽丽, 丛林, 张燕如, 赵婷婷, 金树磊, 王雁群, 韩杰, 李资聪. 豆科种实害虫生物防治研究进展[J]. 中国农学通报, 2021, 37(10): 113-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||