中国农学通报 ›› 2021, Vol. 37 ›› Issue (9): 142-148.doi: 10.11924/j.issn.1000-6850.casb2020-0340
收稿日期:
2020-08-07
修回日期:
2020-10-16
出版日期:
2021-03-25
发布日期:
2021-04-09
通讯作者:
杜春梅
作者简介:
徐明玉,女,1995年出生,黑龙江哈尔滨人,研究生,研究方向:微生物资源挖掘与利用。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学生命科学学院501室,Tel:0451-86609134,E-mail: 基金资助:
Xu Mingyu1,2(), Du Chunmei1,2(
)
Received:
2020-08-07
Revised:
2020-10-16
Online:
2021-03-25
Published:
2021-04-09
Contact:
Du Chunmei
摘要:
柑橘青霉病是柑橘采后在储藏和运输工程中的重要病害,可造成巨大的经济损失,主要由意大利青霉(Penicillium italicum)和指状青霉(P. digitatum)引起。为了更有效地预防和控制柑橘青霉病的发生和发展,为柑橘的运输和保存工作提供科学依据,本文归纳了柑橘青霉病的物理、化学和生物防治方法所采用的主要技术手段和制剂,分析并总结了不同防治措施的优缺点,提出了柑橘青霉病防治后续研究的方向及策略。指出深入探究柑橘青霉病菌的致病机制和生物源制剂对柑橘青霉病的防控机理,推进生物防治方法与化学或物理防治方法联用,能为新型药剂的开发和建立良好的综合防治管理策略奠定基础。
中图分类号:
徐明玉, 杜春梅. 柑橘青霉病防治的研究进展[J]. 中国农学通报, 2021, 37(9): 142-148.
Xu Mingyu, Du Chunmei. The Control of Citrus Blue Mold: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 142-148.
[1] | Strano M C, Altieri G, Admane N, et al. Advance in citrus postharvest management: Diseases, cold storage and quality evaluation[M]. Citrus Pathology, 2017,154(35):120-134. |
[2] |
Sui Y, Wisniewski M, Droby S, et al. Recent advances and current status of the use of heat treatments in postharvest disease management systems: Is it time to turn up the heat?[J]. Trends in Food Science & Technology, 2016,51(15):34-40.
doi: 10.1016/j.tifs.2016.03.004 URL |
[3] |
Diana B Q G, Aurelio L M, María E S M, et al. Postharvest heat treatments to inhibit Penicillium digitatum growth and maintain quality of Mandarin (Citrus reticulata blanco)[J]. Heliyon, 2020,6(1):e03166.
doi: 10.1016/j.heliyon.2020.e03166 URL pmid: 31938749 |
[4] | Cote S, Rodoni L, Miceli E, et al. Effect of radiation intensity on the outcome of postharvest UV-C treatments[J]. Postharvest Biology & Technology, 2013,83(5):83-89. |
[5] |
Gündüz, Gülten T, Juneja V K, et al. Application of ultraviolet-C light on oranges for the inactivation of postharvest wound pathogens[J]. Food Control, 2015,57(3):9-13.
doi: 10.1016/j.foodcont.2015.04.003 URL |
[6] | Yamaga I, Kuniga T, Aoki S, et al. Effect of ultraviolet-B irradiation on disease development caused by Penicillium italicum in Satsuma mandarin fruit[J]. Horticultural Journal, 2016,85(13):86-91. |
[7] | Cerioni, Luciana, Cuello, et al. UV-B radiation on lemons enhances antifungal activity of flavedo extracts against Penicillium digitatum[J]. Lwt Food Science & Technology, 2017,85(21):96-103. |
[8] |
María T L, Fernando A. Effect of LED blue Light on Penicillium digitatum and Penicillium italicum strains[J]. Photochemistry & Photobiology, 2015,91(6):1412-1421.
doi: 10.1111/php.12519 URL pmid: 26288067 |
[9] |
Palou L, Smilanick J L, Crisosto C H, et al. Ozone gas penetration and control of the sporulation of Penicillium digitatum and Penicillium italicum within commercial packages of oranges during cold storage[J]. Crop Protection, 2003,22(9):1131-1134.
doi: 10.1016/S0261-2194(03)00145-5 URL |
[10] |
Ouf S A, Moussa T A A, Abd E A S M, et al. Anti-fungal potential of ozone against some dermatophytes[J]. Brazilian Journal of Microbiology, 2016,47(3):697-702.
doi: 10.1016/j.bjm.2016.04.014 URL pmid: 27287337 |
[11] |
García M, Juan F, Olmo M, et al. Effect of ozone treatment on postharvest disease and quality of different citrus varieties at laboratory and at industrial facility[J]. Postharvest Biology and Technology, 2018,137(15):77-85.
doi: 10.1016/j.postharvbio.2017.11.015 URL |
[12] | Liu K, Wang C, Hu H, et al. Indirect treatment effects of water-air MHCD jet on the inactivation of Penicillium digitatum Suspension[J]. Plasma ence, IEEE Transactions on, 2016,44(11):2729-2737. |
[13] | Smilanick J L, Mansour M F, Gabler F M, et al. The effectiveness of pyrimethanil to inhibit germination of Penicillium digitatum and to control citrus green mold after harvest[J]. Postharvest Biology & Technology, 2006,42(1):75-85. |
[14] |
Pedro A, Moscoso R, Montesinos H C, et al. Characterization of postharvest treatments with sodium methylparaben to control citrus green and blue molds[J]. Postharvest Biology and Technology, 2013,77(2):128-137.
doi: 10.1016/j.postharvbio.2012.10.007 URL |
[15] |
Montesinos H C, Moscoso R, Pedro A, et al. Evaluation of sodium benzoate and other food additives for the control of citrus postharvest green and blue molds[J]. Postharvest Biology and Technology, 2016,115(6):72-80.
doi: 10.1016/j.postharvbio.2015.12.022 URL |
[16] | Ippolito A, Sanzani S M. Control of postharvest decay by the integration of pre and postharvest application of nonchemical compounds[J]. Acta Horticulturae, 2011,905(3):135-143. |
[17] | Youssef K, Roberto S R. Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of 'Italia' table grapes[J]. Postharvest Biology & Technology, 2014,87(6):95-102. |
[18] | Youssef K, Sanzani S M, Myrta A, et al. Effect of a novel potassium bicarbonate-based formulation against Penicillium decay of oranges[J]. Journal of Plant Pathology, 2014,96(2):419-424. |
[19] | Smilanick J L, Mansour M, Sorenson D. Performance of fogged disinfectants to inactivate conidia of Penicillium digitatum within citrus degreening rooms[J]. Postharvest Biology & Technology, 2014,91(2):134-140. |
[20] |
D'Aquino S, Fadda A, Barberis A, et al. Combined effects of potassium sorbate, hot water and thiabendazole against green mould of citrus fruit and residue levels[J]. Food Chemistry, 2013,141(2):858-864.
doi: 10.1016/j.foodchem.2013.03.083 URL |
[21] | Hao W, Zhong G, Hu M, et al. Control of citrus postharvest green and blue mold and sour rot by tea saponin combined with imazalil and prochloraz[J]. postharvest biology & technology, 2010,56(1):39-43. |
[22] | Mamoci E, Hasalliu R, Hodaj E, et al. Effect of essential oils on Penicillim digitatum growth[J]. Albanian Journal of Agricultural Sciences, 2014,13(1):1-7. |
[23] | Naima S, Maryline A V, Mohamed E M, et al. Valorization of citrus by-products using Microwave Steam Distillation (MSD)[J]. Innovative Food Science & Emerging Technologies, 2016,12(2):163-170. |
[24] |
Tao N, Jia L, Zhou H. Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum[J]. Food Chemistry, 2014,153(24):265-271.
doi: 10.1016/j.foodchem.2013.12.070 URL |
[25] |
Dou S, Liu S, Xu X, et al. Octanal inhibits spore germination of Penicillium digitatum involving membrane peroxidation[J]. protoplasma, 2016:16(3) 1-7.
doi: 10.1007/BF01638793 URL |
[26] |
Wuryatmo E, Able A J, Ford C M, et al. Effect of volatile citral on the development of blue mould, green mould and sour rot on navel orange[J]. Australasian Plant Pathology, 2014,43(4):403-411.
doi: 10.1007/s13313-014-0281-z URL |
[27] |
Martínez J A, González R. Essential oils from clove affect growth of Penicillium species obtained from lemons[J]. Communications in agricultural and applied biological sciences, 2013,78(3):563-572.
pmid: 25151832 |
[28] |
He S, Ren X, Lu Y, et al. Microemulsification of clove essential oil improves its in vitro and in vivo control of Penicillium digitatum[J]. Food Control, 2016,65(12):106-111.
doi: 10.1016/j.foodcont.2016.01.020 URL |
[29] |
Duan X, OuYang Q, Tao N, et al. Effect of applying cinnamaldehyde incorporated in wax on green mould decay in citrus fruits[J]. Science of Food and Agriculture, 2019,98(2):1-18.
doi: 10.1002/jsfa.8577 URL |
[30] | Fan F, Tao N, Jia L, et al. Use of citral incorporated in postharvest wax of citrus fruit as a botanical fungicide against Penicillium digitatum[J]. postharvest biology & technology, 2014,90(3):52-55. |
[31] |
Obagwu J, Korsten L. Control of citrus green and blue molds with garlic extracts[J]. European Journal of Plant Pathology, 2003,109(3):221-225.
doi: 10.1023/A:1022839921289 URL |
[32] | Musto M, Potenza G, Cellini F. Inhibition of Penicillium digitatum by a crude extract from Solanum nigrum leaves[J]. Biotechnology, Agronomy, Society and Environment, 2014,18(2):174-180. |
[33] |
Leelasuphakul W, Hemmanee P, Chuenchitt S. Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit[J]. Postharvest Biology and Technology, 2008,48(1):113-121.
doi: 10.1016/j.postharvbio.2007.09.024 URL |
[34] |
Tu Q, Chen J, Guo J. Screening and identification of antagonistic bacteria with potential for biological control of Penicillium italicum of citrus fruits[J]. Scientia Horticulturae, 2013,150(2):125-129.
doi: 10.1016/j.scienta.2012.10.018 URL |
[35] | Tu Q, Chen J, Guo J. Control of postharvest blue mold of nanfeng mandarin by application of strain YS-1 Paenibacillus brasilensis[J]. Journal of Food Science, 2013,78(5):868-873. |
[36] | Demirci, Fikret. Effects of Pseudomonas fluorescens and Candida famata on blue mould of citrus caused by Penicillium italicum[J]. Australian Journal of Crop Science, 2011,5(3):344-349. |
[37] | Tremonte P, Pannella G, Succi M, et al. Antimicrobial activity of Lactobacillus plantarum strains isolated from different environments: A preliminary study[J]. International Food Research Journal, 2017,24(2):852-859. |
[38] |
Gerez C L, Carbajo M S, Rollan G, et al. Inhibition of citrus fungal pathogens by using lactic acid bacteria[J]. Journal of Food Science, 2010,75(6):354-359.
doi: 10.1111/j.1750-3841.2010.01671.x pmid: 20722936 |
[39] |
Hamid M, Sagi G, Zafar I, et al. Control of green and blue mould on orange fruit by Serratia plymuthica strains IC14 and IC1270 and putative modes of action[J]. Postharvest Biology and Technology, 2006,39(2):125-133 .
doi: 10.1016/j.postharvbio.2005.10.007 URL |
[40] | Rosa-Magri M M, Tauk-Tornisielo S M, Ceccato-Antonini S R, et al. Bioprospection of yeasts as biocontrol agents against phytopathogenic molds[J]. Brazilian Archives Of Biology And Technology, 2011,54(1):1-5. |
[41] |
Long C A, Wu Z, Deng B X. Biological control of Penicillium italicum of citrus and Botrytis cinerea of grape by strain 34-9 of Kloeckera apiculata[J]. European Food Research and Technology, 2005,221(19):197-201.
doi: 10.1007/s00217-005-1199-z URL |
[42] |
Abraham A O, Laing M D, Bower J P. Isolation and in vivo screening of yeast and Bacillus antagonists for the control of Penicillium digitatum of citrus fruit[J]. Biological Control, 2010,53(1):32-38.
doi: 10.1016/j.biocontrol.2009.12.009 URL |
[43] |
Platania C, Restuccia C, Muccilli S, et al. Efficacy of killer yeasts in the biological control of Penicillium digitatum on Tarocco orange fruits (Citrus sinensis)[J]. food microbiology, 2012,30(1):219-225.
doi: 10.1016/j.fm.2011.12.010 pmid: 22265304 |
[44] |
Talibi I, Boubaker H, Boudyach E H, et al. Alternative methods for the control of postharvest citrus diseases[J]. Journal of Applied Microbiology, 2014,117(1):1-7.
doi: 10.1111/jam.12495 pmid: 24617532 |
[45] |
Ramsés R G E, Valle F D J A, Juan A R S, et al. Use of a marine yeast as a biocontrol agent of the novel pathogen Penicillium citrinum on Persian lime[J]. Emirates Journal of Food and Agriculture, 2017,29(2):114-122.
doi: 10.9755/ejfa. URL |
[46] | Liu Y, Wang W H, Zhou Y H, et al. Isolation, identification and in vitro screening of Chongqing orangery yeasts for the biocontrol of Penicillium digitatum on citrus fruit[J]. Biological Control Theory & Application in Pest Management, 2017,110(5):18-24. |
[47] |
Cunha T D, Ferraz L P, Wehr P P, et al. Antifungal activity and action mechanisms of yeasts isolates from citrus against Penicillium italicum[J]. International Journal of Food Microbiology, 2018,276(3):20-27.
doi: 10.1016/j.ijfoodmicro.2018.03.019 URL |
[48] | Perez M F, Isas A S, Aladdin A, et al. Killer yeasts as biocontrol agents of postharvest fungal diseases in lemons[C]. Sustainable Technologies for the Management of Agricultural Wastes, 2018,99(2):87-98. |
[49] |
María F P, Mariana A D, Martina M P, et al. Biocontrol features of Clavispora lusitaniae against Penicillium digitatum on lemons[J]. Postharvest Biology and Technology, 2019,155(1):57-64.
doi: 10.1016/j.postharvbio.2019.05.012 URL |
[50] |
Parafati L, Vitale A, Restuccia C, et al. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape[J]. Food microbiology, 2015,47(5):85-92.
doi: 10.1016/j.fm.2014.11.013 URL |
[51] |
Wang W, Deng L, Yao S, et al. Control of green and blue mold and sour rot in citrus fruits by the cationic antimicrobial peptide PAF56[J]. Postharvest Biology and Technology, 2018,136(3):132-138.
doi: 10.1016/j.postharvbio.2017.10.015 URL |
[1] | 胡帅, 罗立平, 孙猛, 杨禹, 温俊宝. 中华甲虫蒲螨和管氏肿腿蜂联合控制双条杉天牛初探[J]. 中国农学通报, 2023, 39(1): 107-111. |
[2] | 闫芳芳, 孔垂旭, 张映杰, 毛敏, 简连均, 王蓉. 产紫青霉对烟草根结线虫病的生物防治研究[J]. 中国农学通报, 2022, 38(33): 103-108. |
[3] | 申修贤, 田太安, 刘健锋, 于晓飞, 董祥立, 李治模, 杨茂发. 益蝽5龄若虫对不同龄期粘虫幼虫的捕食作用[J]. 中国农学通报, 2022, 38(3): 116-120. |
[4] | 符慧娟, 李星月, 易军, 李其勇, 许秉智, 陈友华, 罗聪聪, 张鸿. 四川丘区旱作主要生物灾害防治策略与技术[J]. 中国农学通报, 2022, 38(3): 140-147. |
[5] | 宋晓兵, 黄峰, 罗小玲, 林培华, 彭埃天, 凌金锋, 崔一平. 吡唑醚菌酯对两种优稀水果病原菌的毒力测定及田间防治效果[J]. 中国农学通报, 2022, 38(27): 125-128. |
[6] | 李小艳, 倪畅, 刘旭. 不同防治方法对设施黄瓜根结线虫的防治效果[J]. 中国农学通报, 2022, 38(25): 130-133. |
[7] | 刘龙, 荣华, 郑童童, 马俊杰, 郭庆元. 莫海威芽孢杆菌对梨腐烂病的抑菌防病效果[J]. 中国农学通报, 2022, 38(18): 140-146. |
[8] | 任春燕, 刘杰, 罗明华, 聂忠扬, 黄宁, 赵海燕, 唐良德. 天敌昆虫—蠋蝽的研究进展[J]. 中国农学通报, 2022, 38(12): 100-109. |
[9] | 罗振亚, 林少源, 全林发, 池艳艳, 陈炳旭, 徐淑. 6种杀虫剂对广东玉米草地贪夜蛾的田间应用评价[J]. 中国农学通报, 2022, 38(12): 124-130. |
[10] | 陆秋成, 刘东阳, 王勇, 徐金兰, 江连强, 刘超, 蔡鹏, 李跃建, 何恒果, 蒲德强. 不同胡萝卜素浓度及饲料制作方法对七星瓢虫幼虫的影响[J]. 中国农学通报, 2021, 37(35): 82-87. |
[11] | 杨冰, 平原, 杜春梅. 马铃薯疮痂病的致病机制及防治研究进展[J]. 中国农学通报, 2021, 37(18): 131-137. |
[12] | 姬彦飞, 董欣欣, 田野, 张杰, 杨洪一. 根际促生菌的生防机理及用作生防制剂的潜能[J]. 中国农学通报, 2021, 37(14): 141-149. |
[13] | 沈艳, 何鹏搏, 何鹏飞, 吴毅歆, 孔宝华, 李兴玉, Shahzad Munir, 何月秋. 番茄产后灰霉病的病原鉴定及生物防治[J]. 中国农学通报, 2021, 37(13): 102-107. |
[14] | 宋丽丽, 丛林, 张燕如, 赵婷婷, 金树磊, 王雁群, 韩杰, 李资聪. 豆科种实害虫生物防治研究进展[J]. 中国农学通报, 2021, 37(10): 113-120. |
[15] | 徐雪亮, 刘子荣, 曾绍民, 刘小娟, 范会云, 黄衍章, 姚英娟, 王奋山. 5种生物药剂防治马铃薯主要病害田间药效试验[J]. 中国农学通报, 2020, 36(9): 122-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||