欢迎访问《中国农学通报》,

中国农学通报 ›› 2026, Vol. 42 ›› Issue (1): 211-218.doi: 10.11924/j.issn.1000-6850.casb2025-0348

• 农业信息·科技教育 • 上一篇    

物联网与人工智能技术在智慧农业中的应用研究

俞静(), 许士芳, 韩小双   

  1. 上海市松江区农业技术推广中心蔬菜推广科,上海 201600
  • 收稿日期:2025-05-09 修回日期:2025-10-10 出版日期:2026-01-15 发布日期:2026-01-15
  • 作者简介:

    俞静,女,1993年出生,安徽宣城人,助理农艺师,博士,研究方向:植物逆境胁迫响应机理研究。通信地址:201600 上海市松江区泖港镇中二路1999号 上海松江区农业推广中心,E-mail:

Research on Integrated Application of Internet of Things and AI Technologies in Smart Agriculture

YU Jing(), XU Shifang, HAN Xiaoshuang   

  1. Vegetable Extension Section, Agricultural Technology Extension Center of Songjiang District, Shanghai 201600
  • Received:2025-05-09 Revised:2025-10-10 Published:2026-01-15 Online:2026-01-15

摘要:

探讨物联网与人工智能技术如何推动现代农业的智能化转型,以期为智慧农业发展提供理论依据。本研究采用文献综述法,系统梳理大数据时代背景下,物联网、大数据和人工智能等关键技术在现代智慧农业中的具体应用现状。结果表明,物联网技术实现了农业环境的实时监测,大数据技术为农业生产决策提供了数据支持,而人工智能则在智能育种、产量预测、病虫害识别等领域展现出巨大潜力。物联网、大数据与人工智能的深度融合是提升生产智能化水平的关键。本文剖析了当前在数据、成本、标准与人才方面面临的挑战,并展望了跨模态数据融合、轻量化AI、迁移学习、区块链安全及人机协同等未来方向,以期为相关研究提供借鉴,推动该领域的理论创新与实践落地。

关键词: 物联网, 大数据, 人工智能, 深度学习, 云计算, 智慧农业

Abstract:

This study aims to explore how the Internet of Things (IoT) and artificial intelligence (AI) technologies can drive the intelligent transformation of modern agriculture, with the intention of providing a theoretical basis for the development of smart agriculture. This study employs the literature review method to systematically sort out the current application status of key technologies, including IoT, big data, and AI, in modern smart agriculture against the backdrop of the big data era. The findings indicate that IoT technology enables real-time monitoring of agricultural environments, big data technology provides data support for agricultural production decision-making, and AI demonstrates immense potential in areas such as intelligent breeding, yield prediction, and pest and disease identification. The deep integration of IoT, big data, and AI is the key for improving the level of intelligent production. At the same time, this paper analyzes the current challenges in data, cost, standards and talents, and looks forward to the future directions of cross-modal data fusion, lightweight AI, transfer learning, blockchain security and human-machine collaboration, in order to provide reference for related research and promote theoretical innovation and practice in this field.

Key words: Internet of Things, big data, artificial intelligence, deep learning, cloud computing, smart agriculture