中国农学通报 ›› 2017, Vol. 33 ›› Issue (30): 84-90.doi: 10.11924/j.issn.1000-6850.casb16110155
张鑫,邢亚娟,贾翔,王庆贵
收稿日期:
2016-11-30
修回日期:
2017-10-15
接受日期:
2017-01-20
出版日期:
2017-10-31
发布日期:
2017-10-31
通讯作者:
王庆贵
基金资助:
Received:
2016-11-30
Revised:
2017-10-15
Accepted:
2017-01-20
Online:
2017-10-31
Published:
2017-10-31
摘要: 北方森林是全球第二大生物群区,约占全球森林面积的百分之三十,尽管其细根生物量仅占森林生态系统很小的一部分,但其周转率更快,更易分解,因此,其对土壤碳循环和大气二氧化碳(CO2)通量贡献却很大。笔者综述了氮沉降和CO2浓度升高的背景数据,总结了细根对二者变化的响应,主要从细根的形态特征、解剖结构和生理功能方面入手,探讨了其对氮沉降和CO2浓度升高的响应。结论如下:(1)大气氮沉降量一直处于上升状态,与人类活动密切相关的有机氮量所占比例逐渐加大,而无机氮中NH4-N和NO3-N的变化趋势表现不同;(2)大气CO2浓度一直呈上升趋势,细根形态特征、解剖结构和生理功能对其表现出明显的响应;(3)树种、年龄、土壤类型等都会改变细根形态、解剖结构和生理功能对氮沉降和CO2浓度升高的响应结果,但改变的程度不同。本文可为北方森林乃至温带森林生态系统功能对氮沉降和CO2浓度升高的响应提供参考依据和数据支持。
中图分类号:
张鑫,邢亚娟,贾翔,王庆贵. 北方森林细根对氮沉降和二氧化碳浓度升高的响应[J]. 中国农学通报, 2017, 33(30): 84-90.
[1] Yuan Z Y, Chen H Y H. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses[J]. Critical Reviews in Plant Sciences, 2010,S29(4): 204-221. [2] He C E, Liu X J, Fangmeier A, et al. Quantifying the total airborne nitrogen-input into agroecosystems in the North China Plain[J]. Agriculture Ecosystems Environment, 2007, 121(4): 395-400. [3] Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459–462. [4] Kanakidou M, Myriokefalitakis S, Daskalakis N, et al. Past, Present, and Future Atmospheric Nitrogen Deposition[J]. Journal of the Atmospheric Sciences, 2016, 73(5): 2039-2047. [5] Erisman J W, Domburg N. The Dutch N-cascade in the European perspective[J]. Science China Life Sciences, 2005, 48(2): 453-462. [6] Sutton M A. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives[N]. Cambridge University Press: 2011. [7] Goulding K W T, Bailey N J, Bradbury N J, et al. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes[J]. New Phytologist, 1998, 139(1): 49-58. [8] Cornell S C. Atmospheric nitrogen deposition: Revisiting the question of the importance of the organic component[J]. Environmental Pollution, 2011, 159(10): 2214-22. [9] Cape J N, Cornell S E, Jickells T D, et al. Organic nitrogen in the atmosphere—Where does it come from? A review of sources and methods[J]. Atmospheric Research, 2011, 102(1–2): 30-48. [10] Altieri K E, Hastings M G, Peters A J, et al. Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry[J]. Atmospheric Chemistry Physics, 2012, 12(7): 3557-3571. [11] Driscoll C T, Whitall D, Aber J: Nitrogen pollution in the north-eastern United States: Sources, effects, and management options[J]. BioScience, 2003, 53(4): 357-374. [12] Milakovsky B, Frey B, James T. Carbon dynamics in the boreal forest[M]. New York: Springer Science Business Media, 2012: 109-135. [13] IPCC (Intergovernmental Panel on Climate Change) (2013) Climate change 2013: The Physical Science Basis [M]. New York: Cambridge Press, 2013. [14] Dataset from http://www.esrl.noaa.gov. Accessed 4 Aug 2016. [15] Pregitzer K S, Hendrick R L. Fine root architecture of nine North American trees[J]. Ecological Monographs, 2002, 72(2): 293-309. [16] Jackson R B, Mooney, H A, Schulze, E D. A global budget for ?ne-root biomass, surface area, and nutrient contents[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(14): 7362-6. [17] Grier C C, Vogt K A, Keyes M R, et al. Biomass distribution and above- and below-ground production in young and mature Abiesamabilis zone ecosystems of the Washington Cascades[J]. Canadian Journal of Forest Research, 2011,S11(1): 155-167. [18] Santantonio D, Grace J C. Estimating fine-root production and turnover from biomass and decomposition data: a compartment–flow model[J]. Canadian Journal of Forest Research,S1987,S17(8): 900-9. [19] Mc Cormack M L, Dickie I A, Eissenstat DM, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes[J]. New Phytologist, 2015, 207(3): 505-18. [20] 江俐妮,魏红旭,刘勇等. 长白落叶松播种苗根系形态可塑性与氮素空间异质性关系[J]. 东北林业大学学报,S2010,S38(1): 24-27. [21] Kou L, Guo D, Yang H, et al. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China[J]. Plant and Soil, 2015, 391(1): 207-218. [22] Wang G L, Fahey T J, Xue S, et al. Root morphology and architecture respond to N addition in Pinus tabuliformis, west China[J]. Oecologia, 2013, 171(2): 583-590. [23] Zobel R W, Wright S F. Roots and soil management: interactions between roots and the soil[J]. Roots Soil Management Interactions Between Roots the Soil, 2005(2): 609. [24] 陈海波,卫星,王婧等. 水曲柳苗木根系形态和解剖结构对不同氮浓度的反应[J]. 林业科学,2010,46(2):61-66. [25] 刘金梁,梅莉,谷加存等. 内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响[J]. 生态学杂志,2009,28(1):1-6. [26] King J S, Thomas R B, Strain B R. Morphology and tissue quality of seeding root systems of Pinusteada and Pinusponderosa as affected by varying CO2, temperature, and nitrogen[J]. Plant and Soil, 1997, 195(1): 107-119. [27] Pregitzer K S, Zak D R, Maziasz J, et al. Interactive effects of atmospheric CO2 and soil-N availability on fine roots of Populus tremuloides[J]. Ecological Applications, 2000, 10(1): 18-33. [28] Noguchi K, Nagakura J, Kaneko S. Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after 3 years of nitrogen fertilization[J]. Frontiers in Plant Science, 2013, 4(1): 347. [29] Ryser P, Lambers H. Root and leaf attributes accounting for the performance of fast-and slow-growing grasses at different nutrient supply[J]. Plant and Soil, 1995, 170(2): 251-265. [30] Nagel O W, Konings H, Lambers H. The in?uence of a reduced gibberellin biosynthesis and nitrogen supply on the morphology and anatomy of leaves and roots of tomato(Solanum ly copersicum )[J]. Physiologia Plantarum, 2001, 111(1): 40-45. [31] 闫国永,王晓春,邢亚娟等. 兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J]. 北京林业大学学报,2016,38(4):36-43. [32] Guo D L, Mitchell R J, Hendricks J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest[J]. Oecologia, 2004, 140(3): 450-457. [33] 王文娜,王燕,王韶仲等. 氮有效性增加对细根解剖、形态特征和菌根侵染的影响[J]. 应用生态学报,2016,27(4):1294-1302. [34] Eissenstat D M, Achor D S. Anatomical characteristics of roots of citrus rootstocks that vary in specific root length[J]. New Phytologist, 1999, 141(2): 309-321. [35] Luo Y, Su B, Currie W, et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide[J]. Bioscience, 2004, 54(8): 731-739. [36] Norby R J, Jackson R B. Root dynamics and global change: seeking an ecosystem perspective[J]. New Phytologist, 2000, 147(1): 3-12. [37] Pritchard S G, Strand A E, Mccormack M L, et al. Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2-enrichment: a six-year-minirhizotron study[J]. Global Change Biology,S2008,S14(3): 588-602. [38] Taylor B N, Strand A E, Cooper E R, et al. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest[J]. Tree Physiology,S2014,S34(9): 486-497. [39] Wang X, Fujita S, Nakaji T, et al. Fine root turnover of Japanese white birch (Betula platyphylla var.japonica) grown under elevated CO2 in northern Japan[J]. Trees,S2016,S30(2): 363-374. [40] Crookshanks M, Taylor G, Broad meadow M. Elevated CO2 and tree root growth: contrasting responses in Fraxinus excelsior, Quercus petraea, and Pinus sylvestris[J]. New Phytologist, 1998, 138(2): 241- 250. [41] Larigauderie A, Reynolds J F, Strain B R. Root response to CO2 enrichment and nitrogen supply in loblolly pine[J]. Plant Soil, 1994, 165(1): 21- 32. [42] Pregitzer K S, Zak D R, Maziasz J, et al. Interactive effects of atmospheric CO2 and soil-N availability on fine roots of populus tremuloides[J]. Ecological Applications,S2000,S10(1): 18-33. [43] Tingey D T, Phillips D L, Johnson M G. Elevated CO2 and conifer roots: Effects on growth, life span and turnover[J]. New Phytologist,S2000,S147(1): 87-103. [44] Milchunas D G, Morgan J A, Mosier A R, et al. Root dynamics and demography in shortgrass steppe under elevated CO2, and comments on minirhizotron technology[J]. Global Change Biology, 2005,S11(10): 1837-1855. [45] Peltola H, Kilpel?inen A, Kellom?ki S. Diameter growth of Scots pine (Pinus sylvestris) trees grown at elevated temperature and carbon dioxide concentration under boreal conditions[J]. Tree Physiology,S2002,S22(14): 963-72. [46] Kilpel?inen A, Peltola H, Ryypp? A. Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties[J]. Tree Physiology, 2005, 25(1): 75-83. [47] 王娜,张韫,钱文丽等. CO2浓度倍增对红松幼苗根尖和叶解剖结构及生理功能的影响[J]. 植物生态学报,2016,40(1):60-68. [48] Atwell B J, Henery M L, Whitehead D. Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures[J]. Tree Physiology, 2003, 23(1): 13-21. [49] Kostiainen K, Kaakinen S, Saranp?? P, et al. Effect of elevated [CO2] on stem wood properties of mature Norway spruce grown at different soil nutrient availability[J]. Global Change Biology,S2004,S10(9): 1526-1538. [50] Mccormack M L, Adams T S, Smithwick EAH, et al. Predicting fine root lifespan from plant functional traits in temperate trees[J]. New Phytologist, 2012, 195(4): 823-831. [51] Bader M, Hiltbrunner E, K?rner C. Fine root responses of mature deciduous forest trees to free air carbon dioxide enrichment (FACE) [J]. Functional Ecology, 2009,S23(5): 913-921. [52] Kilpel?inen A, Gerendiain A Z, Luostarinen K, et al. Elevated temperature and CO2concentration effects on xylem anatomy of Scots pine[J]. Tree Physiology,S2007,S27(9): 1329-38. [53] Qi J, Marshall J D, Mattson K G. High soil carbon dioxide concentration inhibit root respiration of Douglas fir[J]. New Phytologist, 1994, 128(3): 435-442. [54] Burton A J, Zogg G P, Pregitzer K S, et al. Effect of measurement CO2 concentration on sugar maple root respiration[J]. Tree Physiology, 1997, 17(7): 421- 427. [55] Burton A J, Pregitzer K S. Measurement carbon dioxide concentration does not affect root respiration of nine tree species in the field[J]. Tree Physiology, 2002, 22(1): 67-72. |
[1] | 金梅娟, 佘旭东, 沈明星, 陆长婴, 陶玥玥, 王海候. 稻田构建垄型土槽耦合基质栽培草莓的生产效应研究[J]. 中国农学通报, 2023, 39(1): 71-76. |
[2] | 周冬冬, 张军, 葛梦婕, 刘忠红, 朱晓欢, 李春燕. 不同氮肥处理对稻茬晚播小麦‘淮麦36’产量、氮素利用率和品质的影响[J]. 中国农学通报, 2023, 39(1): 1-7. |
[3] | 王福玉, 陈贵菊, 孙雷明, 黄玲, 邵敏敏, 赵凯, 杨本洲, 张玉丹, 闫璐, 王霖. 耕作方式与施氮量互作对小麦生长、产量与品质的影响[J]. 中国农学通报, 2022, 38(9): 20-26. |
[4] | 陈英花, 白如霄, 王娟, 张新疆, 刘玲慧, 刘小龙, 冯国瑞, 危常州. 叶面喷施烯效唑和硼对塔额盆地甜菜产量和含糖率的影响[J]. 中国农学通报, 2022, 38(9): 41-48. |
[5] | 李兴华, 王欢, 张盛, 蔡星星, 周强, 周楠. 氮肥用量与运筹方式对晚籼稻产量及花后干物质积累与转运的影响[J]. 中国农学通报, 2022, 38(9): 6-13. |
[6] | 王强强, 杨自辉, 郭树江, 张剑挥, 王多泽. 灌水量对民勤干旱沙区骏枣生长和产量的影响[J]. 中国农学通报, 2022, 38(9): 71-74. |
[7] | 周小红. 基于多元回归分析的农作物产量估测模型研究[J]. 中国农学通报, 2022, 38(8): 152-156. |
[8] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[9] | 武志斌, 黄超, 雷媛, 敬峰, 刘战东. 不同产量水平下冬小麦水肥利用特性研究[J]. 中国农学通报, 2022, 38(8): 64-71. |
[10] | 郑本川, 张锦芳, 蒋俊, 崔成, 柴靓, 黄友涛, 周正鉴, 李浩杰, 蒋梁材. 不同熟期“川油”系列甘蓝型油菜品种主要性状与产量的相关分析[J]. 中国农学通报, 2022, 38(7): 7-17. |
[11] | 付焱焱, 李云峰, 韩冬, 马树庆. 吉林省粮食主产区玉米生长季水分盈亏及其对产量的影响[J]. 中国农学通报, 2022, 38(7): 99-105. |
[12] | 钮力亚, 王伟伟, 张玉洁, 邹景伟, 王志, 陆莉, 王奉芝, 王伟, 于亮. 小麦品质性状及产量性状对馒头面条评分的影响[J]. 中国农学通报, 2022, 38(6): 129-133. |
[13] | 姚金保, 杨学明, 周淼平, 张鹏. 江苏省小麦参试品种(系)产量与产量构成因素分析[J]. 中国农学通报, 2022, 38(6): 15-19. |
[14] | 田艺心, 高凤菊, 曹鹏鹏, 高祺. 黄淮海夏大豆干物质积累、转运及产量对播期的响应特征[J]. 中国农学通报, 2022, 38(6): 20-25. |
[15] | 董红业, 徐婷, 刘文豪, 李强, 柳延涛. 新疆塔里木盆地东南缘花生主要农艺性状的分析与综合评价[J]. 中国农学通报, 2022, 38(6): 26-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||