 
 中国农学通报 ›› 2020, Vol. 36 ›› Issue (3): 142-146.doi: 10.11924/j.issn.1000-6850.casb18090073
        
               		李京京, 齐晓龙, 王相国, 邢凯, 常迪, 郭勇, 倪和民, 盛熙晖( )
)
                  
        
        
        
        
    
收稿日期:2018-09-16
									
				
											修回日期:2018-10-12
									
				
									
				
											出版日期:2020-01-25
									
				
											发布日期:2020-01-22
									
			通讯作者:
					盛熙晖
							作者简介:李京京,女,1993年出生,研究生,通信地址:102206 北京市昌平区北农路7号北京农学院,E-mail: 552471245@qq.com
				
							基金资助:
        
               		Li Jingjing, Qi Xiaolong, Wang Xiangguo, Xing Kai, Chang Di, Guo Yong, Ni Hemin, Sheng Xihui( )
)
			  
			
			
			
                
        
    
Received:2018-09-16
									
				
											Revised:2018-10-12
									
				
									
				
											Online:2020-01-25
									
				
											Published:2020-01-22
									
			Contact:
					Sheng Xihui  			     					     	
							摘要:
环状RNA(circRNA)是一类内源性的环状非编码RNA。目前circRNA的研究主要集中在癌症、肿瘤等方面,在家畜动物中的研究较少且主要集中在circRNA的信息挖掘。本文总结了circRNA的生成方式、分类、研究方法及生物学功能等方面内容,归纳了其在家畜动物肌肉发育、脂肪沉积等方面的研究进展,分析总结了目前家畜动物circRNA研究中存在的问题,并对其未来的研究方向进行了展望。
中图分类号:
李京京, 齐晓龙, 王相国, 邢凯, 常迪, 郭勇, 倪和民, 盛熙晖. circRNA的生物学功能及其在家畜动物上的研究进展[J]. 中国农学通报, 2020, 36(3): 142-146.
Li Jingjing, Qi Xiaolong, Wang Xiangguo, Xing Kai, Chang Di, Guo Yong, Ni Hemin, Sheng Xihui. The Biological Function of circRNA and Its Research Progress in Domestic Animals[J]. Chinese Agricultural Science Bulletin, 2020, 36(3): 142-146.
| [1] | Nigro J M, Cho K R, Fearon E R , et al. Scrambled exons[J]. Cell, 1991,64(3):607. doi: 10.1016/0092-8674(91)90244-s URL pmid: 1991322 | 
| [2] | Werfel S, Nothjunge S, Schwarzmayr T , et al. Characterization of circular RNAs in human, mouse and rat hearts[J]. Journal of Molecular & Cellular Cardiology, 2016,98:103-107. doi: 10.1016/j.yjmcc.2016.07.007 URL pmid: 27476877 | 
| [3] | Jeck W R, Sorrentino J A, Wang K , et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. Rna-a Publication of the Rna Society, 2013,19(2):141-157. doi: 10.1261/rna.035667.112 URL | 
| [4] | Salzman J, Gawad C, Wang P L , et al. Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types[J]. Plos One., 2012,7(2):e30733. doi: 10.1371/journal.pone.0030733 URL pmid: 22319583 | 
| [5] | Salzman J, Chen R E, Olsen M N , et al. Cell-type specific features of circular RNA expression[J]. Plos Genetics, 2013,9(9):e1003777. doi: 10.1371/journal.pgen.1003777 URL pmid: 24039610 | 
| [6] | Lei K, Bai H, Wei Z , et al. The mechanism and function of circular RNAs in human diseases[J]. Experimental Cell Research, 2018. | 
| [7] | Venø M T, Hansen T B, Venø S T , et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development[J]. Genome Biology, 2015,16(1):245. doi: 10.1186/s13059-015-0801-3 URL pmid: 26541409 | 
| [8] | Ivanov A, Memczak S, Wyler E , et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals[J]. Cell Reports, 2015,10(2):170-177. doi: 10.1016/j.celrep.2014.12.019 URL pmid: 25558066 | 
| [9] | Wang Y, Wang Z . Efficient backsplicing produces translatable circular mRNAs[J]. Rna-a Publication of the Rna Society, 2015,21(2):172-179. doi: 10.1261/rna.048272.114 URL pmid: 25449546 | 
| [10] | Starke S, Jost I, Rossbach O , et al. Exon circularization requires canonical splice signals[J]. Cell Reports, 2015,10(1):103-111. doi: 10.1016/j.celrep.2014.12.002 URL pmid: 25543144 | 
| [11] | Memczak S, Jens M, Elefsinioti A , et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013,495(7441):333-338. doi: 10.1038/nature11928 URL | 
| [12] | Glaå Ar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs[J]. Rna-a Publication of the Rna Society, 2014,20(11):1666-1670. doi: 10.1261/rna.043687.113 URL | 
| [13] | Li J H, Liu S, Zhou H , et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Research, 2014,42(Database issue):D92. doi: 10.1093/nar/gkt1248 URL pmid: 24297251 | 
| [14] | Yang J H, Qu L H . DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data[J]. Methods in Molecular Biology, 2012,822(822):233. doi: 10.1007/978-1-61779-427-8_16 URL pmid: 22144203 | 
| [15] | Liu Y C, Li J R, Sun C H , et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data[J]. Nucleic Acids Research, 2016,44(Database issue):D209-D215. doi: 10.1093/nar/gkv940 URL pmid: 26450965 | 
| [16] | Dudekula D B, Panda A C, Grammatikakis I , et al. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs[J]. Rna Biology, 2016,13(1):34-42. doi: 10.1080/15476286.2015.1128065 URL pmid: 26669964 | 
| [17] | Liang G, Yang Y, Niu G , et al. Genome-wide profiling ofSus scrofacircular RNAs across nine organs and three developmental stages[J]. Dna Research An International Journal for Rapid Publication of Reports on Genes & Genomes, 2017,24(5):523-535. doi: 10.1093/dnares/dsx022 URL pmid: 28575165 | 
| [18] | Jeck W R, Sharpless N E . Detecting and characterizing circular RNAs[J]. Nature Biotechnology, 2014,32(5):453-461. doi: 10.1038/nbt.2890 URL | 
| [19] | Suzuki H, Zuo Y, Wang J , et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing[J]. Nucleic Acids Research, 2006,34(8):e63. doi: 10.1093/nar/gkl151 URL pmid: 16682442 | 
| [20] | Tabak H F, Van D H G, Smit J , et al. Discrimination between RNA circles, interlocked RNA circles and lariats using two-dimensional polyacrylamide gel electrophoresis[J]. Nucleic Acids Research, 1988,16(14A):6597-6605. doi: 10.1093/nar/16.14.6597 URL pmid: 2456529 | 
| [21] | Li Z, Huang C, Bao C , et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nature Structural & Molecular Biology, 2015,22(3):256-264. doi: 10.1038/nsmb.2959 URL pmid: 25664725 | 
| [22] | Zhang Y, Zhang X O, Chen T , et al. Circular intronic long noncoding RNAs[J]. Molecular Cell, 2013,51(6):792-806. doi: 10.1016/j.molcel.2013.08.017 URL | 
| [23] | Hoffmann S, Otto C, Doose G , et al. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection[J]. Genome Biology, 2014,15(2):1-11. doi: 10.1186/gb-2014-15-2-r34 URL pmid: 24512684 | 
| [24] | Wang K, Singh D, Zeng Z , et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery[J]. Nucleic Acids Research, 2010,38(18):e178. doi: 10.1093/nar/gkq622 URL pmid: 20802226 | 
| [25] | Gao Y, Wang J, Zhao F . CIRI: an efficient and unbiased algorithm for de novo circular RNA identification[J]. Genome Biology, 2015,16(1):4. doi: 10.1186/s13059-014-0571-3 URL pmid: 25583365 | 
| [26] | Zhang X O, Wang H B, Zhang Y , et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014,159(1):134-147. doi: 10.1016/j.cell.2014.09.001 URL | 
| [27] | Ebbesen K K, Kjems J, Hansen T B . Circular RNAs: Identification, biogenesis and function ☆[J]. Biochimica Et Biophysica Acta, 2016,1859(1):163. | 
| [28] | Hansen T B, Jensen T I, Clausen B H , et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013,495(7441):384-388. doi: 10.1038/nature11993 URL | 
| [29] | Wang X, Zhu X, Zhang H , et al. Increased circular RNA hsa_circ_0012673 acts as a sponge of miR-22 to promote lung adenocarcinoma proliferation[J]. Biochemical & Biophysical Research Communications, 2018,496(4):1069-1075. doi: 10.1016/j.bbrc.2018.01.126 URL pmid: 29366790 | 
| [30] | Deng N, Li L, Gao J , et al. Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma[J]. Biochem Biophys Res Commun, 2017,495(1). doi: 10.1016/j.bbrc.2017.11.028 URL pmid: 29117539 | 
| [31] | Ashwal-Fluss R, Meyer M, Pamudurti N R , et al. circRNA Biogenesis Competes with Pre-mRNA Splicing[J]. Molecular Cell, 2014,56(1):55-66. doi: 10.1016/j.molcel.2014.08.019 URL | 
| [32] | Du W W, Ling F, Yang W , et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity[J]. Cell Death & Differentiation, 2016,24(2):357. doi: 10.1038/cdd.2016.133 URL pmid: 27886165 | 
| [33] | Du W W, Yang W, Liu E , et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Research, 2016,44(6):2846. doi: 10.1093/nar/gkw027 URL pmid: 26861625 | 
| [34] | Wang F, Nazarali A J, Ji S . Circular RNAs as potential biomarkers for cancer diagnosis and therapy[J]. Am J Cancer Res., 2016,6(6):1167-1176. URL pmid: 27429839 | 
| [35] | Shao Y, Chen Y . Roles of Circular RNAs in Neurologic Disease[J]. Frontiers in Molecular Neuroscience, 2016,9(307):25. doi: 10.3389/fnmol.2016.00025 URL pmid: 27147959 | 
| [36] | Sun J, Xie M, Huang Z , et al. Integrated analysis of non-coding RNA and mRNA expression profiles of 2 pig breeds differing in muscle traits[J]. Journal of Animal Science, 2017,95(3):1092. doi: 10.2527/jas.2016.0867 URL pmid: 28380516 | 
| [37] | Chen J, Zou Q, Lv D , et al. Comprehensive transcriptional landscape of porcine cardiac and skeletal muscles reveals differences of aging[J]. Oncotarget, 2018,9(2):1524. doi: 10.18632/oncotarget.23290 URL pmid: 29416711 | 
| [38] | Wei X, Li H, Yang J , et al. Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p.[J]. Cell Death & Disease, 2017,8(10):e3153. doi: 10.1038/cddis.2017.541 URL pmid: 29072698 | 
| [39] | Li H, Yang J, Wei X , et al. CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a[J]. Journal of Cellular Physiology, 2017,233(11). doi: 10.1002/jcp.26230 URL pmid: 29044517 | 
| [40] | Cao Y, You S, Yao Y , et al. Expression profiles of circular RNAs in sheep skeletal muscle[J]. Asian-Australasian journal of animal sciences, 2018. doi: 10.5713/ajas.17.0563 URL pmid: 29642686 | 
| [41] | Huang M, Shen Y, Mao H , et al. Circular RNA expression profiles in the porcine liver of two distinct phenotype pig breeds[J]. Asian-Australasian journal of animal sciences, 2017. doi: 10.5713/ajas.17.0651 URL pmid: 29268579 | 
| [42] | Li C, Li X, Ma Q , et al. Genome-wide analysis of circular RNAs in prenatal and postnatal pituitary glands of sheep[J]. Sci Rep., 2017,8(57):97165-97177. doi: 10.1038/s41598-017-16344-y URL pmid: 29170496 | 
| [43] | Tao H, Xiong Q, Zhang F , et al. Circular RNA profiling reveals chi_circ_0008219 function as microRNA sponges in pre-ovulatory ovarian follicles of goats (Capra hircus)[J]. Genomics, 2017. doi: 10.1016/j.ygeno.2017.10.005 URL pmid: 29107014 | 
| [44] | Zhang X, Yan Y, Lei X , et al. Circular RNA alterations are involved in resistance to avian leukosis virus subgroup-J-induced tumor formation in chickens[J]. Oncotarget, 2017,8(21):34961-34970. doi: 10.18632/oncotarget.16442 URL pmid: 28415618 | 
| [1] | 黄成, 李旭楠, 李诗燕, 王锦达. 植物SWEET基因家族的研究进展[J]. 中国农学通报, 2022, 38(17): 17-26. | 
| [2] | 吕子鹤, 丁松爽, 卢瑞琳. 中国农作物气候适宜性研究进展[J]. 中国农学通报, 2020, 36(24): 78-84. | 
| [3] | 于冰,田烨,李海英,吕笑言,王宇光,端木慧子. 植物bHLH转录因子的研究进展[J]. 中国农学通报, 2019, 35(9): 75-80. | 
| [4] | 陈虞超,巩 檑,张 丽,石 磊,李 苗,甘晓燕,聂峰杰,宋玉霞. 新型植物激素独脚金内酯的研究进展[J]. 中国农学通报, 2015, 31(24): 157-162. | 
| [5] | 常肖肖,蒋林树. 葡萄籽原花青素生物学功能及其在畜禽 生产上应用的研究进展[J]. 中国农学通报, 2015, 31(11): 5-8. | 
| [6] | 陈思宁 黎贞发 刘淑梅. 设施农业气象灾害研究综述及研究方法展望[J]. 中国农学通报, 2014, 30(20): 302-307. | 
| [7] | 金 怡 刘合芹 汪得凯 陶跃之. 植物光呼吸分子机制研究进展[J]. 中国农学通报, 2011, 27(3): 232-236. | 
| [8] | 纪鸿飞 彭振英 毕玉平 单雷. 小麦铝胁迫相关基因的研究进展[J]. 中国农学通报, 2010, 26(24): 10-19. | 
| [9] | 李厚伟. 白细胞介素32研究进展[J]. 中国农学通报, 2009, 25(22): 0-0. | 
| [10] | 高 洋,刘玉芬. 猪甘露聚糖结合凝集素的遗传特征及研究进展[J]. 中国农学通报, 2009, 25(21): 18-21. | 
| [11] | 祁 龙,李志红,高雪峰. 农村剩余劳动力转移管理信息系统探索[J]. 中国农学通报, 2007, 23(5): 566-566. | 
| [12] | yanghongyukm@.com. 拟南芥在植物抗病性分子机制研究中的作用[J]. 中国农学通报, 2006, 22(5): 358-358. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||