中国农学通报 ›› 2022, Vol. 38 ›› Issue (17): 17-26.doi: 10.11924/j.issn.1000-6850.casb2021-0669
所属专题: 生物技术
收稿日期:
2021-07-06
修回日期:
2021-09-14
出版日期:
2022-06-15
发布日期:
2022-07-08
通讯作者:
王锦达
作者简介:
黄成,男,2000年出生,福建三明人,本科在读,研究方向:抗逆基因挖掘。通信地址:350002 福建省福州市仓山区上下店路15号 福建农林大学,E-mail: 基金资助:
HUANG Cheng(), LI Xunan, LI Shiyan, WANG Jinda(
)
Received:
2021-07-06
Revised:
2021-09-14
Online:
2022-06-15
Published:
2022-07-08
Contact:
WANG Jinda
摘要:
植物糖转运蛋白SWEET基因家族是近年来发现的一类重要的糖转运蛋白,通过调节糖分在植物体内的转运及分配等,进而在植物的生长发育、生理代谢、抗逆境胁迫等方面起着重要作用。不同物种中SWEET基因所表现的生物学功能不同,对植物生物生命活动起着重要影响。本研究报告了植物SWEET基因家族的蛋白结构、转运机制以及生物学功能的研究现状,旨在为进一步研究SWEET基因家族的其他结构与功能提供理论基础。
中图分类号:
黄成, 李旭楠, 李诗燕, 王锦达. 植物SWEET基因家族的研究进展[J]. 中国农学通报, 2022, 38(17): 17-26.
HUANG Cheng, LI Xunan, LI Shiyan, WANG Jinda. Research Progress of Plant SWEET Gene Family[J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 17-26.
物种 | 基因名称 | 功能 | 参考文献 |
---|---|---|---|
拟南芥 | AtSWEET1 | 参与花药发育 | [ |
AtSWEET2 | 参与液泡糖转运 | [ | |
AtSWEET4 | 参与根生长与花的发育 | [ | |
AtSWEET5 | 参与花粉发育 | [ | |
AtSWEET7/8/9 | 参与花器官生长发育 | [ | |
AtSWEET11/12 | 参与韧皮部、种子糖分转运 | [ | |
AtSWEET13/14 | 参与花粉发育 | [ | |
AtSWEET15 | 参与种子生长发育、根叶片衰老、花的发育、抗逆境胁迫 | [ | |
AtSWEET16 | 参与根的生长发育、低温胁迫应答 | [ | |
AtSWEET17 | 参与根部液泡糖转运 | [ | |
水稻 | OsSWEET1a/2a/3a/15 | 参与花的生长发育 | [ |
OsSWEET5 | 参与叶片衰老、花的发育 | [ | |
OsSWEET11 | 参与韧皮部糖转运、花粉发育、病原物互作 | [ | |
OsSWEET14 | 参与根的生长发育、抗病原物胁迫 | [ | |
玉米 | ZmSWEET1b | 参与植株衰老调控、粒重调控 | [ |
ZmSWEET4 | 参与籽粒灌浆调控 | [ | |
ZmSWEET10 | 参与韧皮部糖转运 | [ | |
ZmSWEET13a/b/c | 参与糖分转运 | [ | |
大豆 | GmSWEET5/10/12/21/23/48 | 种子中高表达基因 | [ |
GmSWEET11 | 可能参与铁离子转运 | [ | |
木薯 | MeSWEET10a/15b | 参与块根发育 | [ |
MeSWEET10 | 参与抗病原物胁迫 | [ | |
油菜 | BrSWEET11-LF | 参与抗盐胁迫 | [ |
BrSWEET17-MF1 | 参与抗盐胁迫 | [ | |
茶树 | CsSWEET1/2/3/16/17 | 参与低温胁迫应答 | [ |
棉花 | GhSWEET1a-at/Dt、GhSWEET1b-at/Dt | 可能参与盐胁迫应答、花器官发育 | [ |
GhSWEET2a-at/DT GhSWEET5-at/dt GhSWEET7-at/dt GhSWEET9-at/dt GhSWEET15-at/dt | 可能参与花器官发育 | [ | |
GhSWEET7b-DT GhSWEET10c-at/dt GhSWEET10f-at/dt GhSWEET15c-at/dt GhSWEET15bDt | 可能参与种子生长发育 | [ | |
甜橙 | Cs2g2870/3g20720 | 可能参与花的发育 | [ |
Cs2g28300/3g14550/7g02970 | 可能参与果实发育 | [ | |
Cs2g04140/9g04180 | 可能参与叶片生长发育 | [ | |
CsSWEET1 | 参与生物胁迫响应 | [ | |
苹果 | MdSWEET1 | 可能参与盐胁迫响应 | [ |
MdSWEET11 | 可能参与茎的生长发育 | [ | |
MdSWEET9b/15a | 可能参与调控果实糖分积累 | [ | |
葡萄 | VvSWEET4 | 参与次生代谢调控和生物胁迫响应 | [ |
高粱 | SbSWEET8-1 | 参与叶片糖分调控 | [ |
SbSWEET4-3 | 参与韧皮部糖分转运 | [ | |
SbSWEET2-1/7-1 | 参与种子发育 | [ | |
SbSWEET9-3 | 参与花粉发育 | [ |
物种 | 基因名称 | 功能 | 参考文献 |
---|---|---|---|
拟南芥 | AtSWEET1 | 参与花药发育 | [ |
AtSWEET2 | 参与液泡糖转运 | [ | |
AtSWEET4 | 参与根生长与花的发育 | [ | |
AtSWEET5 | 参与花粉发育 | [ | |
AtSWEET7/8/9 | 参与花器官生长发育 | [ | |
AtSWEET11/12 | 参与韧皮部、种子糖分转运 | [ | |
AtSWEET13/14 | 参与花粉发育 | [ | |
AtSWEET15 | 参与种子生长发育、根叶片衰老、花的发育、抗逆境胁迫 | [ | |
AtSWEET16 | 参与根的生长发育、低温胁迫应答 | [ | |
AtSWEET17 | 参与根部液泡糖转运 | [ | |
水稻 | OsSWEET1a/2a/3a/15 | 参与花的生长发育 | [ |
OsSWEET5 | 参与叶片衰老、花的发育 | [ | |
OsSWEET11 | 参与韧皮部糖转运、花粉发育、病原物互作 | [ | |
OsSWEET14 | 参与根的生长发育、抗病原物胁迫 | [ | |
玉米 | ZmSWEET1b | 参与植株衰老调控、粒重调控 | [ |
ZmSWEET4 | 参与籽粒灌浆调控 | [ | |
ZmSWEET10 | 参与韧皮部糖转运 | [ | |
ZmSWEET13a/b/c | 参与糖分转运 | [ | |
大豆 | GmSWEET5/10/12/21/23/48 | 种子中高表达基因 | [ |
GmSWEET11 | 可能参与铁离子转运 | [ | |
木薯 | MeSWEET10a/15b | 参与块根发育 | [ |
MeSWEET10 | 参与抗病原物胁迫 | [ | |
油菜 | BrSWEET11-LF | 参与抗盐胁迫 | [ |
BrSWEET17-MF1 | 参与抗盐胁迫 | [ | |
茶树 | CsSWEET1/2/3/16/17 | 参与低温胁迫应答 | [ |
棉花 | GhSWEET1a-at/Dt、GhSWEET1b-at/Dt | 可能参与盐胁迫应答、花器官发育 | [ |
GhSWEET2a-at/DT GhSWEET5-at/dt GhSWEET7-at/dt GhSWEET9-at/dt GhSWEET15-at/dt | 可能参与花器官发育 | [ | |
GhSWEET7b-DT GhSWEET10c-at/dt GhSWEET10f-at/dt GhSWEET15c-at/dt GhSWEET15bDt | 可能参与种子生长发育 | [ | |
甜橙 | Cs2g2870/3g20720 | 可能参与花的发育 | [ |
Cs2g28300/3g14550/7g02970 | 可能参与果实发育 | [ | |
Cs2g04140/9g04180 | 可能参与叶片生长发育 | [ | |
CsSWEET1 | 参与生物胁迫响应 | [ | |
苹果 | MdSWEET1 | 可能参与盐胁迫响应 | [ |
MdSWEET11 | 可能参与茎的生长发育 | [ | |
MdSWEET9b/15a | 可能参与调控果实糖分积累 | [ | |
葡萄 | VvSWEET4 | 参与次生代谢调控和生物胁迫响应 | [ |
高粱 | SbSWEET8-1 | 参与叶片糖分调控 | [ |
SbSWEET4-3 | 参与韧皮部糖分转运 | [ | |
SbSWEET2-1/7-1 | 参与种子发育 | [ | |
SbSWEET9-3 | 参与花粉发育 | [ |
[1] | 王嘉佳, 唐忠华. 可溶性糖对植物生长发育调控作用的研究进展[J]. 植物学研究, 2014(3):71-76. |
[2] |
ROITSCH T. Source- sinks regulation by sugar and stress[J]. Curr opin plant biol, 1999, 2(3):198-206.
doi: 10.1016/S1369-5266(99)80036-3 URL |
[3] | SHEEN J. C4 GENE EXPRESSION[J]. Annu rev plant biol, 1999, 50(50):187-217. |
[4] | SMEEKENS S. Sugar-induced signal transduction in plants[J]. Annu rev plant biol, 2000, 51:49-81. |
[5] |
GAZZARRINI S, MCCOURT P. Genetic interactions between ABA, ethylene and sugar signaling pathways[J]. Curr opin plant biol, 2001, 4(5):387-391.
doi: 10.1016/S1369-5266(00)00190-4 URL |
[6] |
FINKELSTEIN R R, GIBSON S I. ABA and sugar interactions regulating development: cross-talk or voices in a crowd?[J]. Curr Opin Plant Biol, 2002, 5(1):26-32.
doi: 10.1016/S1369-5266(01)00225-4 URL |
[7] |
RADCHUK R, EMERY R J, WEIER D, et al. Sucrose non-fermenting kinase 1 (SnRK1) coordinates metabolic and hormonal signals during pea cotyledon growth and differentiation[J]. Plant J, 2010, 61(2):324-338.
doi: 10.1111/j.1365-313X.2009.04057.x URL |
[8] |
BAKER R F, LEACH K A, BRANUN D M. SWEET as sugar: new sucrose effluxers in plants[J]. Mol plant, 2012, 5(4):766-768.
doi: 10.1093/mp/SSS054 URL |
[9] |
CHEN L Q. SWEET sugar transporters for phloem transport and pathogen nutrition[J]. New phytol, 2014, 201(4):1150-1155.
doi: 10.1111/nph.12445 URL |
[10] |
CHANDRAN D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance[J]. IUBMB life, 2015, 67(7):461-471.
doi: 10.1002/iub.1394 URL |
[11] | 黄成, 张明阳, 郭燕芳, 等. 甘蔗双向糖转运蛋白ShSWEET2a基因的克隆与表达分析[J]. 中国糖料, 2021, 43(2):1-8. |
[12] | 陈慧敏, 李威, 马雄风, 等. 植物SWEET基因家族的相关研究进展[J]. 中国农学通报, 2017, 33(19):34-39. |
[13] |
YUAN M, WANG S. Rice MtN3/Saliva/SWEET family genes and their homologs in cellular organisms[J]. Mol plant, 2013, 6:665-674.
doi: 10.1093/mp/sst035 URL |
[14] |
CHEN L Q, HOU B H, LALONDE S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323):527.
doi: 10.1038/nature09606 URL |
[15] | 刘畅, 姜晶, 韩晓雪, 等. 植物中SWEET基因家族研究进展[J]. 植物生理学报, 2014, 50(9):1367-1373. |
[16] |
TAO Y, CHEUNG L S, LI S, et al. Structure of a eukaryotic SWEET transporter in a homotrimeric complex[J]. Nature, 2015, 527(7577):259-263.
doi: 10.1038/nature15391 URL |
[17] | WELLMER F, ALVES-FERREIRA M, Dubois A, et al. Genome-wide analysis of gene expression during early Arabidopsis flower development[J]. PLoS genet, 2006, 2(7):1012-1024. |
[18] |
CHARDON F, BEDU M, CALENGE F, et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis[J]. Curr Biol, 2013, 23(8):697-702.
doi: 10.1016/j.cub.2013.03.021 URL |
[19] |
CHEN L Q, QU X Q, HOU B H, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport[J]. Science, 2012, 335(6065):207-211.
doi: 10.1126/science.1213351 URL |
[20] | LIU X, ZHANG Y, YANG C, et al. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development[J]. Sci.Rep, 2016, 6:24563. |
[21] |
ENGEL M L, HOLMES-DAVIS R, MCCORMICK S. Green sperm. Identification of male gamete promoters in Arabidopsis[J]. Plant physiol, 2005, 138(4):2124-2133.
doi: 10.1104/pp.104.054213 URL |
[22] |
BOCK K W, HONYS D, WARD J M, et al. Integrating membrane transport with male gametophyte development and function through transcriptomics[J]. Plant Physiol, 2006, 140(4):1151-1168.
doi: 10.1104/pp.105.074708 URL |
[23] |
GUAN Y F, HUANG X Y, ZHU J, et al. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family,is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis[J]. Plant physiol, 2008, 147(2):852-863.
doi: 10.1104/pp.108.118026 URL |
[24] |
LIN L W, SOSSO D, CHEN L Q, et al. Nectar secretion equires sucrose phosphate synthases and the sugar trans-porter SWEET9[J]. Nature, 2014, 508(7497):546-549.
doi: 10.1038/nature13082 URL |
[25] |
CHEN L Q, LIN L W, QU X Q, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo[J]. Plant cell, 2015, 27(3):607-619.
doi: 10.1105/tpc.114.134585 URL |
[26] |
DURAND M, PORCHERON B, HENNION N, et al. Water deficit enhances c export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots[J]. Plant physiol, 2016, 170 (3):1460-1479.
doi: 10.1104/pp.15.01926 URL |
[27] |
HIR L R, SPINNER L, KLEMENS P A W, et al. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis[J]. Mol plant, 2015, 8(11):1687-1690.
doi: 10.1016/j.molp.2015.08.007 URL |
[28] | 代玥, 刘林娅, 杨那, 等. 植物中SWEET蛋白的研究进展[J]. 分子植物育种, 2021, 19(4):1128-1135. |
[29] |
SEO P J, PARK J M, KANG S K, et al. An Arabidopsis senescence associated protein SAG29 regulates cell viability under high salinity[J]. Planta, 2011, 233(1):189-200.
doi: 10.1007/s00425-010-1293-8 URL |
[30] |
SLEWINSKI T L. Diverse Functional roles of monosaccharide transporters and their Homologs in vascular plants: A Physiological Perspective[J]. Mol Plant, 2011, 4(4):641-662.
doi: 10.1093/mp/ssr051 URL |
[31] |
GUO W J, NAGY R, CHEN H Y, et al. SWEET17, a facilitative transporter, mediates fructose transport across the Tonoplast of Arabidopsis roots and leaves[J]. Plant physiol, 2013, 164 (2):777-789.
doi: 10.1104/pp.113.232751 URL |
[32] | 关淑艳, 刘梦彤, 周洋洋, 等. 植物糖转运蛋白基因家族生物学功能的研究进展[J]. 吉林农业大学学报, 2020, 42(6):591-597. |
[33] |
YUAN M, WANG S. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms[J]. Mol Plant, 2013, 6(3):665-674.
doi: 10.1093/mp/sst035 URL |
[34] |
ZHOU Y, LIU L, HUANG W, et al. Overexpression of OsSWEET5 in rice causes growth retardation and precocious senescence[J]. PLoS one, 2014, 9(4):e94210.
doi: 10.1371/journal.pone.0094210 URL |
[35] |
胡丽萍, 张峰, 徐惠, 等. 植物SWEET基因家族结构、功能及调控研究进展[J]. 生物技术通报, 2017, 33(4):27-37.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.004 |
[36] | GAO Y, ZHANG C, HAN X, et al. Inhibition of OsSWEET11 function in mesophyll cellsimproves resistance of rice to sheath blight disease[J]. Mol.plant pathol, 2018, 19(9):2149-2161. |
[37] |
CHU Z H, FU B Y, YANG H, et al. Tar-geting xa13, a recessive gene for bacterial blight resistance in rice[J]. Theor appl genet, 2006, 112(3):455-461.
doi: 10.1007/s00122-005-0145-6 URL |
[38] |
COHN M, BART R S, SHYBUT M, et al. Xanthomonas axonopodis virulence is promoted by a transcription activator- like effector mediated induction of a SWEET sugar transporter in cassava[J]. Mol plant microbe interact, 2014, 27(11):1186.
doi: 10.1094/MPMI-06-14-0161-R URL |
[39] | 马来. 水稻蔗糖转运蛋白OsSWEET11和OsSWEET14功能的研究[D]. 南京: 南京农业大学, 2016. |
[40] |
ZENG X, LUO Y, VU NTQ, et al. CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv.Zhonghua 11 confers resistance to Xanthomonas oryzae pv.oryzae without yield penalty[J]. BMC Plant Biol, 2020, 20(1):1-11.
doi: 10.1186/s12870-019-2170-7 URL |
[41] | 辛红佳. 植物SWEET基因家族CladeⅠ基因功能研究[D]. 北京: 中国农业科学院, 2018. |
[42] |
CHOUREY P S, LI Q B, CEVALLOS-CEVALLOS J. Pleiotropy and its dissection through a metabolic gene Miniature1 (Mn1) that encodes a cell wall invertase in developing seeds of maize[J]. Plant sci, 2012, 184:45-53.
doi: 10.1016/j.plantsci.2011.12.011 URL |
[43] | 杨于天程, 范会, 王姣姣, 等. 玉米糖运载蛋白基因ZmSWEET10a的生物信息和表达分析[J]. 分子植物育种, 2018, 16(20):6537-6544. |
[44] |
BEZRUTCZYK M, Hartwig T, Horschman M. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays[J]. New phytol, 2018, 218(2):594-603.
doi: 10.1111/nph.15021 URL |
[45] | 李艳娇, 李文才, 孙琦, 等. SWEET转运蛋白在作物中的功能研究及前景展望[J]. 山东农业科学, 2019, 51(6):154-159. |
[46] | Lauter A N M, Peiffer G A, Yin T, et al. Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves[J]. BMC genoms, 2014, 15(1):702. |
[47] | 薛蓓蓓, 覃丽芳, 董明右, 等. 木薯SWEETs基因家族生物信息学及表达特性研究[J]. 基因组学与应用生物学, 2019, 38(1):260-268. |
[48] |
LIU Q, YUAN M, ZHOU Y, et al. A paralog of the MtN3 /saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice[J]. Plant cell environ, 2011, 34(11):1958-1969.
doi: 10.1111/j.1365-3040.2011.02391.x URL |
[49] | MIAO L M, LV Y X, KONG L J, et al. Genome-wide identifica-tion, phylogeny, evolution, and expression patterns of Mt N3/saliva/SWEET genes and functional analysis of BcNS in Brassica rapa[J]. Mol plant pathol, 2018, 19(1):174-181. |
[50] |
YUE C, CAO H L, WANG L, et al. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season[J]. Plant mol biol, 2015, 88(6):591-608.
doi: 10.1007/s11103-015-0345-7 URL |
[51] |
EOM J S, CHEN L Q, de Sosso D, et al. SWEETs, transport-ers for intracellular and intercellular sugar translocation[J]. Curr opin plant biol, 2015, 25(6):53-62.
doi: 10.1016/j.pbi.2015.04.005 URL |
[52] |
ZHAO L J, YAO J B, CHEN W, et al. A genome-wide analysis of SWEET gene family in cotton and their expressions under different stresses[J]. Journal of Cotton Research, 2018, 2:14-28.
doi: 10.1186/s42397-019-0031-4 URL |
[53] |
ZHENG Q M, TANG Z, XU Q, et al. Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis)[J]. Plant cell tiss org, 2014, 119(3):609-624.
doi: 10.1007/s11240-014-0560-y URL |
[54] |
ZHEN Q L, FANG T, PENG Q, et al. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation[J]. Horticulture research, 2018, 5(1):14.
doi: 10.1038/s41438-018-0024-3 URL |
[55] | 路静, 马齐军, 康慧, 等. 苹果糖转运蛋白基因MdSWEET1在番茄中异源表达提高其耐盐性[J]. 园艺学报, 2019, 46(3):433-443. |
[56] |
ELOÏSE M, SYLVAIN L C, MARY-LorÈne G. Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a Soilborne Pathogen[J]. Front. Plant Sci., 2019, 10:884.
doi: 10.3389/fpls.2019.00884 URL |
[57] | HIROSHI M, HIROYUKI K, SHIGEMITSU K. The sorghum SWEET gene family:stem sucrose accumulation as revealed through transcriptome profiling[J]. Biotechnol.Biofuels, 2016, 9(1):1-12. |
[58] | 李慧敏, 梁永书, 南文斌. 糖调控植物根系生长发育的研究进展[J]. 中国农学通报, 2015, 31(14):108-113. |
[59] |
MISHRA B S, SINGH M, AGGRAWAL P, et al. Glucose and auxin signaling interaction in controlling arabidopsis thaliana seedlings root growth and development[J]. PLoS one, 2009, 4(2):e4502.
doi: 10.1371/journal.pone.0004502 URL |
[60] | 张岗, 刘思思, 杨新杰, 等. 一个全新的铁皮石斛DoSWEET1基因的分子克隆与特性分析[J]. 药学学报, 2016, 51(6):991-997. |
[61] | 徐磊, 王伟伟, 苏世超, 等. 小麦糖转运蛋白基因TaSWEET6的克隆与表达分析[J]. 麦类作物学报, 2016, 36(11):1411-1418. |
[62] | 张璐, 李明, 叶广继, 等. 马铃薯糖转运蛋白基因的克隆及表达分析[J]. 西北植物学报, 2019, 39(9):1529-1533. |
[63] | 安振宇, 方仁, 黄伟雄, 等. 番荔枝中一个SWEET家族基因的克隆与表达分析[J]. 热带作物学报, 2020(11):2143-2148. |
[64] | 王锐, 徐娟娟, 刘鑫, 等. 牡丹开花相关SWEET家族基因生物信息学与表达模式分析[J]. 西北植物学报, 2019, 39(12):2145-2153. |
[65] |
MIZUNO H, KASUGA S, KAWAHIGASHI H. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling[J]. Biotechnol biofuels, 2016, 9(1) :127.
doi: 10.1186/s13068-016-0546-6 URL |
[66] |
PATIL G, VALLIYODAN B, DESHMUKH R, et al. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis[J]. BMC genom, 2015, 16:520.
doi: 10.1186/s12864-015-1730-y URL |
[67] |
QUIAPIM A C, BRITO M S, BERNARDES L A, et al. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species[J]. Plant physiol, 2009, 149(3):1211-123.
doi: 10.1104/pp.108.131573 URL |
[68] | 李新然, 张智俊, 喻珮瑶, 等. 毛竹SWEET基因家族的全基因组鉴定与分析[J]. 生物信息学, 2020, 18(4):236-246. |
[69] | 王梓然, 匡柳青, 陈尚武, 等. 在葡萄果实发育Ⅰ、Ⅲ期差异表达的SWEET基因家族成员的生物信息学分析[J]. 中国农业大学学报, 2016, 21(11):24-33. |
[70] | 程杰, 张新圣, 李安琪, 等. 番茄果实成熟过程中SlSWEET7a的功能分析[J]. 中国农业科学, 2018(15):138-148. |
[71] | WEI X, LIU F, CHEN C, et al. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars[J]. Front Plant Sci, 2014, 5:569. |
[72] | 李丽, 莫旭艳, 李甜甜, 等. 白叶枯病菌效应子XopN在拥有OsSWEET11同源基因的水稻品种上发挥毒性作用[J]. 中国水稻科学, 2020(4):368-382. |
[73] |
CHONG J, PIRON M C, MEYER S, et al. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea[J]. J exp bot, 2014, 65(22):6589.
doi: 10.1093/jxb/eru375 URL |
[74] |
KAY S, HAHN S, MAROIS E, et al. Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3Δrep16[J]. Plant J, 2009, 59(6):859-871.
doi: 10.1111/j.1365-313X.2009.03922.x URL |
[75] | 周媛. SWEET糖转运蛋白在南方根结线虫寄生过程中的作用机制研究[D]. 沈阳: 沈阳农业大学, 2020. |
[76] |
ANTONY G, ZHOU J H, HUANG S, et al. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os11N3[J]. Plant cell, 2010, 22(11):3864-3876.
doi: 10.1105/tpc.110.078964 URL |
[77] | 周燕妮. 青杆SWEET1蛋白编码基因参与花粉萌发和逆境响应过程[D]. 北京: 北京林业大学, 2016. |
[78] | ASISH K P, ANATH B D. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicol.Environ.Saf, 2005, 60:324-349. |
[79] | ZHOU A, MA H, FENG S, et al. A novel sugar transporter from Dianthus spiculifolius, DsSWEET12, affects sugar metabolism and confers osmotic and oxidative stress tolerance in Arabidopsis[J]. Int.J.mol.sci, 2018, 19(2):497. |
[80] | ZHOU A, MA H, FENG S, et al. DsSWEET17, a tonoplast-localized sugar transporter from Dianthus spiculifolius, affects sugar metabolism and confers multiple stress tolerance in Arabidopsis[J]. Int.J.mol.sci., 2018, 19 (6):1564. |
[81] | 朱丽. 桉树SWEET基因家族的分析[D]. 广州: 华南农业大学, 2016. |
[82] | 黄东梅, 肖海涛, 张志, 等. 萱草糖转运蛋白HfSWEET2a的克隆及低温胁迫下的表达分析[J]. 应用技术学报, 2020, 20(4):367-374. |
[83] | 张彩霞. 高温影响水稻韧皮部同化物转运及代谢的作用机制及调控[D]. 北京: 中国农业科学院, 2018. |
[84] | REDONDO-Nieto M, MAUNOURY N, MERGAERT P, et al. Boron and calcium induce major changes in gene expression during legume nodule organogenesis.Does boron have a role in signaling?[J]. New phytol, 2012, 95:14-19. |
[85] |
XU Y, TAO Y, CHEUNG L S, et al. Structures of bacterialhomologues of SWEET transporters in two distinct confor-mations[J]. Nature, 2014, 515(7527):448.
doi: 10.1038/nature13670 URL |
[1] | 梁俊芬, 张磊, 张辉玲, 周灿芳, 万忠. 改革开放以来广东农民收入变化特征及未来选择[J]. 中国农学通报, 2022, 38(6): 149-157. |
[2] | 张勇, 徐智, 高丽芳, 邓亚琴, 王瑞雪, 王宇蕴. 有机类肥料部分替代化肥影响新垦红壤生菜地产量因素的研究[J]. 中国农学通报, 2022, 38(5): 79-85. |
[3] | 李锐, 尚霄, 尚春树, 常利芳, 闫蕾, 白建荣. SSR荧光检测解析224份山西玉米自交系的遗传结构与遗传关系[J]. 中国农学通报, 2022, 38(5): 9-16. |
[4] | 沙月霞, 黄泽阳, 魏照清. 生物菌剂撒施对宁夏石嘴山盐碱地微生物群落结构的影响[J]. 中国农学通报, 2022, 38(34): 82-90. |
[5] | 李政璞, 佟静, 王素娜, 李炎艳, 王丽萍, 梁浩, 武占会. 光周期对植物工厂水芹产量和品质的影响[J]. 中国农学通报, 2022, 38(31): 38-42. |
[6] | 刘琪, 高志强, 杨珍平, 乔月静. 合理氮肥用量改善冬小麦土壤耕层细菌群落结构及理化性质研究[J]. 中国农学通报, 2022, 38(30): 77-84. |
[7] | 姜玉琴, 谢先进, 黄达. 耕地质量对耕地生产力的影响[J]. 中国农学通报, 2022, 38(3): 75-80. |
[8] | 晁赢, 付钢锋, 阎祥慧, 杭中桥, 杨全刚, 王会, 潘红, 娄燕宏, 诸玉平. 有机肥对作物品质、土壤肥力及环境影响的研究进展[J]. 中国农学通报, 2022, 38(29): 103-107. |
[9] | 郭文, 代希茜, 莫楠, 张应青, 余晨, 田江, 耿智德, 李露. 东盟国家大豆种植及其大豆产品进出口结构分析[J]. 中国农学通报, 2022, 38(23): 156-164. |
[10] | 崔雪娇, 佟潇禹, 张彦龙, 曾伟民. 刺五加果多糖ASPF的结构表征及其体外抗肺癌活性研究[J]. 中国农学通报, 2022, 38(22): 157-164. |
[11] | 乔绪强, 郭婷婷, 杨炳松, 李建召, 梁美霞. 苹果组培苗移栽过程中根茎叶解剖结构变化[J]. 中国农学通报, 2022, 38(22): 49-54. |
[12] | 王丽学, 韩静, 陈龙宾, 余新越, 刘景喜, 马毅, 霍文娟. 甲酸和木醋液对苜蓿青贮细菌群落结构的影响[J]. 中国农学通报, 2022, 38(2): 92-101. |
[13] | 邓慧群, 全程, 张炎生, 潘林艳, 韦柳花. 广西野生茶树叶片横切结构及特性分析[J]. 中国农学通报, 2022, 38(19): 47-53. |
[14] | 刘红光, 董晓翠. 长江经济带农业投入产出的能值结构、效率及其驱动因素研究[J]. 中国农学通报, 2022, 38(14): 130-138. |
[15] | 黎景锐, 王谢, 罗怀良, 张建华. 四川省农作物种植结构与气候变化耦合协调性研究[J]. 中国农学通报, 2022, 38(12): 69-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||