中国农学通报 ›› 2022, Vol. 38 ›› Issue (17): 27-34.doi: 10.11924/j.issn.1000-6850.casb2021-1021
所属专题: 生物技术
收稿日期:
2021-10-28
修回日期:
2022-02-05
出版日期:
2022-06-15
发布日期:
2022-07-08
通讯作者:
丁晗
作者简介:
王晨,男,1996年出生,山东潍坊人,硕士研究生,研究方向:植物分子遗传。通信地址:311300 浙江省杭州市临安区武肃街666号 浙江农林大学林业与生物技术学院,Tel:0571-63743621,E-mail: 基金资助:
WANG Chen1(), ZHANG Juping2, DING Han3(
)
Received:
2021-10-28
Revised:
2022-02-05
Online:
2022-06-15
Published:
2022-07-08
Contact:
DING Han
摘要:
microRNA(miRNA)是一类内源性非编码小RNA,在植物整个生长发育过程中都起着重要作用,是基因表达的重要调控因子,而microRNA172(miR172)是众多miRNA家族中的重要的一员。为了更直观的认识miR172在植物中所发挥的作用,笔者归纳和总结了miR172在调控植物生长发育过程和响应逆境的研究进展,具体分析了miR172在植物营养生长阶段转变、开花、花器官发育、节间长度、植物商品器官发育以及逆境胁迫响应等诸多过程中发挥的作用。笔者认为miR172在植物中仍有很多未知的功能尚未发掘,因此未来深入挖掘和研究miR172在植物生长过程中更多的作用是一个重要的研究方向,在此基础上深入解析miR172在此过程中的功能、分子调控机制,为人为利用miR172调控植物生长发育奠定理论基础。
中图分类号:
王晨, 张居萍, 丁晗. miR172调控植物生长发育及逆境胁迫的研究进展[J]. 中国农学通报, 2022, 38(17): 27-34.
WANG Chen, ZHANG Juping, DING Han. Plant Growth and Development and Response to Adversity Stress Regulated by miR172: A Review[J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 27-34.
参与植物生长阶段 | 物种 | 相关基因 | 参考文献 | |||
---|---|---|---|---|---|---|
营养生长阶段转变 | 拟南芥 | miR172、GL1 | [ | |||
大豆 | miR172c | [ | ||||
玉米 | GL15、CG1 | [ | ||||
麻风树 | miR172 | [ | ||||
加杨 | miR172 | [ | ||||
桉树 | miR172 | [ | ||||
高粱 | miR172 | [ | ||||
西番莲 | miR172 | [ | ||||
开花 | 拟南芥 | miR172、AGL15、GI、SVP | [ | |||
水稻 | miR172、OsIDS1、SNB | [ | ||||
蝴蝶兰 | miR172 | [ | ||||
金缕梅 | miR172 | [ | ||||
牵牛花 | miR172 | [ | ||||
油菜 | miR172 | [ | ||||
弯曲碎米荠 | miR172 | [ | ||||
高山南芥 | miR172 | [ | ||||
花器官发育 | 番茄 | miR172 | [ | |||
拟南芥 | miR172、AP2 | [ | ||||
烟草 | miR172、AP2 | [ | ||||
兰花 | AP2-like | [ | ||||
玫瑰 | AP2-like | [ | ||||
桃树 | Prupe.6G242400 | [ | ||||
水稻 | miR172、OsMADS1 | [ | ||||
小麦 | miR172、Q(AP2L5) | [ | ||||
大麦 | miR172、CLY1 | [ | ||||
逆境胁迫 | 拟南芥 | miR172b/c、TOE1/2 | [ | |||
马铃薯 | stu-miR172c/d | [ | ||||
芥菜 | miR172 | [ | ||||
文心兰 | miR172a | [ | ||||
番茄 | miR172a/b | [ | ||||
节间长度 | 水稻 | SUI4/SNB、miR172 | [ | |||
棉花 | miR172 | [ | ||||
大麦 | miR172 | [ | ||||
作物穗型 | 小麦 | miR172/Q | [ | |||
水稻 | miR172 | [ | ||||
马铃薯块茎 | 马铃薯 | miR172 | [ | |||
根瘤 | 大豆 | miR172c、NNC1 | [ | |||
百脉根 | miR172 | [ |
参与植物生长阶段 | 物种 | 相关基因 | 参考文献 | |||
---|---|---|---|---|---|---|
营养生长阶段转变 | 拟南芥 | miR172、GL1 | [ | |||
大豆 | miR172c | [ | ||||
玉米 | GL15、CG1 | [ | ||||
麻风树 | miR172 | [ | ||||
加杨 | miR172 | [ | ||||
桉树 | miR172 | [ | ||||
高粱 | miR172 | [ | ||||
西番莲 | miR172 | [ | ||||
开花 | 拟南芥 | miR172、AGL15、GI、SVP | [ | |||
水稻 | miR172、OsIDS1、SNB | [ | ||||
蝴蝶兰 | miR172 | [ | ||||
金缕梅 | miR172 | [ | ||||
牵牛花 | miR172 | [ | ||||
油菜 | miR172 | [ | ||||
弯曲碎米荠 | miR172 | [ | ||||
高山南芥 | miR172 | [ | ||||
花器官发育 | 番茄 | miR172 | [ | |||
拟南芥 | miR172、AP2 | [ | ||||
烟草 | miR172、AP2 | [ | ||||
兰花 | AP2-like | [ | ||||
玫瑰 | AP2-like | [ | ||||
桃树 | Prupe.6G242400 | [ | ||||
水稻 | miR172、OsMADS1 | [ | ||||
小麦 | miR172、Q(AP2L5) | [ | ||||
大麦 | miR172、CLY1 | [ | ||||
逆境胁迫 | 拟南芥 | miR172b/c、TOE1/2 | [ | |||
马铃薯 | stu-miR172c/d | [ | ||||
芥菜 | miR172 | [ | ||||
文心兰 | miR172a | [ | ||||
番茄 | miR172a/b | [ | ||||
节间长度 | 水稻 | SUI4/SNB、miR172 | [ | |||
棉花 | miR172 | [ | ||||
大麦 | miR172 | [ | ||||
作物穗型 | 小麦 | miR172/Q | [ | |||
水稻 | miR172 | [ | ||||
马铃薯块茎 | 马铃薯 | miR172 | [ | |||
根瘤 | 大豆 | miR172c、NNC1 | [ | |||
百脉根 | miR172 | [ |
[1] |
WIGHTMAN B, HA L, RUVKUN G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J]. Cell, 1993, 75(5):855-862.
doi: 10.1016/0092-8674(93)90530-4 URL |
[2] |
ZHANG B, WANG Q, PAN X. MicroRNAs and their regulatory roles in animals and plants[J]. Journal of cellular physiology, 2007, 210(2):279-289.
doi: 10.1002/jcp.20869 URL |
[3] |
LEE R C, FEINBAUM R L, AMBROST V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854.
doi: 10.1016/0092-8674(93)90529-Y URL |
[4] |
REINHART B J, WEINSTEIN E G, RHOADES M W, et al. MicroRNAs in plants[J]. Genes & development, 2002, 16(13):1616-1626.
doi: 10.1101/gad.1004402 URL |
[5] |
PARK W, LI J, SONG R, et al. CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana[J]. Current biology, 2002, 12(17):1484-1495.
doi: 10.1016/S0960-9822(02)01017-5 URL |
[6] | KOZOMARA A, BIRGAOANU M, GRIFFITHS J S. miRBase: from microRNA sequences to function[J]. Nucleic acids research, 2018, 47(D1):D155-D162. |
[7] | OKAMURO J K, CASTER B, VILLARROEL R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis[J]. Proceedings of the national academy of sciences of the united states of America, 1997, 94(13):7076-7081. |
[8] | Ó'MAOILÉIDIGH D S, DRIEL A D V, SINGH A, et al. Systematic analyses of the miR172 family members of Arabidopsis define their distinct roles in regulation of APETALA2 during floral transition[J]. PLoS biology, 2021, 19(2):e3001043. |
[9] | ZHANG B, CHEN X. Secrets of the miR172 family in plant development and flowering unveiled[J]. PLoS biology, 2021, 19(2):e3001099. |
[10] |
ZHU Q, HELLIWELL C A. Regulation of flowering time and floral patterning by miR172[J]. Journal of experimental botany, 2011, 62(2):487-495.
doi: 10.1093/jxb/erq295 URL |
[11] |
KERSTETTER R A, POETHIG R S. The specification of leaf identity during shoot development[J]. Annual review of cell and developmental biology, 1998, 14(1):373-398.
doi: 10.1146/annurev.cellbio.14.1.373 URL |
[12] |
WILKIE J D, SEDGLEY M, OLESEN T. Regulation of floral initiation in horticultural trees[J]. Journal of experimental botany, 2008, 59(12):3215-3228.
doi: 10.1093/jxb/ern188 URL |
[13] |
HUIJSER P, SCHMID M. The control of developmental phase transitions in plants[J]. Development, 2011, 138(19):4117-4129.
doi: 10.1242/dev.063511 URL |
[14] |
POETHIG S S. Phase change and the regulation of shoot morphogenesis in plants.[J]. Science, 1990, 250(4983):923-930.
doi: 10.1126/science.250.4983.923 URL |
[15] | 傅钰, 王苓, 龙鸿. 拟南芥生物钟双突变体lhycca1营养生长时相转变[J]. 热带作物学报, 2019, 40(6):1089-1094. |
[16] |
WU G, PARK M Y, CONWAY S R, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4):750-759.
doi: 10.1016/j.cell.2009.06.031 URL |
[17] |
WANG J, CZECH B, WEIGEL D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4):738-749.
doi: 10.1016/j.cell.2009.06.014 URL |
[18] |
AUKERMAN M J, SAKAI H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes[J]. The plant cell, 2003, 15(11):2730-2741.
doi: 10.1105/tpc.016238 URL |
[19] |
CHEN X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666):2022-2025.
doi: 10.1126/science.1088060 URL |
[20] |
JUNG J H, SEO Y H, SEO P J, et al. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis[J]. The plant cell, 2007, 19(9):2736-2748.
doi: 10.1105/tpc.107.054528 URL |
[21] |
YANT L, MATHIEU J, DINH T T, et al. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2[J]. The plant cell, 2010, 22(7):2156-2170.
doi: 10.1105/tpc.110.075606 URL |
[22] |
JUNG J H, SEO P J, KANG S K, et al. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions[J]. Plant molecular biology, 2011, 76(1-2):35-45.
doi: 10.1007/s11103-011-9759-z URL |
[23] |
XU Y, QIAN Z, ZHOU B, et al. Age-dependent heteroblastic development of leaf hairs in Arabidopsis[J]. New phytologist, 2019, 224(2):741-748.
doi: 10.1111/nph.16054 URL |
[24] | 赵晓晖. miR172及其靶基因在大豆光周期调控开花中的功能研究[D]. 哈尔滨: 中国科学院研究生院(东北地理与农业生态研究所), 2015. |
[25] | LAUTER N, KAMPANI A, CARLSON S, et al. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize[J]. Proceedings of the national academy of sciences of the United States of America, 2005, 102(26):9412-9417. |
[26] |
CHUCK G, CIGAN A M, SAETEURN K, et al. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA[J]. Nature genetics, 2007, 39(4):544-549.
doi: 10.1038/ng2001 URL |
[27] | TANG M, BAI X, NIU L, et al. miR172 regulates both vegetative and reproductive development in the perennial woody plant Jatropha curcas[J]. Plant & cell physiology, 2018, 59(12):2549-2563. |
[28] | WANG J, PARK M Y, WANG L, et al. miRNA control of vegetative phase change in trees[J]. Plos genetics, 2011, 7(2):e1002012. |
[29] | LEVY A, SZWERDSZARF D, ABU-ABIED M, et al. Profiling microRNAs in Eucalyptus grandis reveals no mutual relationship between alterations in miR156 and miR172 expression and adventitious root induction during development[J]. Biomed central, 2014, 15(1):524. |
[30] |
HASHIMOTO S, TEZUKA T, YOKOI S. Morphological changes during juvenile-to-adult phase transition in sorghum.[J]. Planta, 2019, 250(5):1557-1566.
doi: 10.1007/s00425-019-03251-x URL |
[31] |
SILVA P O, BATISTA D S, CAVALCANTI J H F, et al. Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172[J]. Annals of botany, 2019, 123(7):1191-1203.
doi: 10.1093/aob/mcz025 URL |
[32] |
LEE Y S, LEE D Y, CHO L H, et al. Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens[J]. Rice, 2014, 7(1):1-13.
doi: 10.1186/1939-8433-7-1 URL |
[33] |
HAN Y, YAN Q, MING F. An effective homologous cloning method for isolating novel miR172s from Phalaenopsis hybrida[J]. Genetics and molecular biology, 2014, 37(2):414-422.
doi: 10.1590/S1415-47572014005000004 URL |
[34] |
LI X, GUO F, MA S, et al. Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental gloxinia (Sinningia speciosa)[J]. Journal of zhejiang university science B, 2019, 20(4):322-331.
doi: 10.1631/jzus.B1800003 URL |
[35] |
GLAZIŃSKA P, ZIENKIEWICZ A, WOJCIECHOWSKI W, et al. The putative miR172 target gene in APETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil[J]. Journal of plant physiology, 2009, 166(16):1801-1813.
doi: 10.1016/j.jplph.2009.05.011 URL |
[36] |
SHIVARAJ S M, JAIN A, SINGH A. Highly preserved roles of Brassica miR172 in polyploid Brassicas: ectopic expression of variants of Brassica miR172 accelerates floral transition[J]. Molecular genetics and genomics, 2018, 293(5):1121-1138.
doi: 10.1007/s00438-018-1444-3 URL |
[37] |
LEE H, YOO S J, LEE J H, et al. Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis[J]. Nucleic acids research, 2010, 38(9):3081-3093.
doi: 10.1093/nar/gkp1240 URL |
[38] |
ZHOU C, ZHANG T, WANG X, et al. Molecular basis of age-dependent vernalization in Cardamine flexuosa[J]. Science, 2013, 340(6136):1097-1100.
doi: 10.1126/science.1234340 URL |
[39] |
BERGONZI S, ALBANI M C, THEMAAT E V L V, et al. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabisalpina[J]. Science, 2013, 340(6136):1094-1097.
doi: 10.1126/science.1234116 URL |
[40] |
YANOFSKY M F. Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development[J]. Annual review of plant physiology and plant molecular biology, 1995, 46(1):167-188.
doi: 10.1146/annurev.pp.46.060195.001123 URL |
[41] | 许智宏, 刘春明. 植物发育的分子机理[M]. 北京: 植物发育的分子机理, 1998. |
[42] | CHUNG M Y, NATH U K, VREBALOV J, et al. Ectopic expression of miRNA172 in tomato (Solanum lycopersicum) reveals novel function in fruit development through regulation of an AP2 transcription factor[J]. BMC plant biology, 2020, 20(19):818-823. |
[43] |
MLOTSHWA S, YANG Z, KIM Y, et al. Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana[J]. Plant molecular biology, 2006, 61(4-5):781-793.
doi: 10.1007/s11103-006-0049-0 URL |
[44] |
JUNG J H, LEE S, YUN J, et al. The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning[J]. Plant science, 2014, 215-216: 29-38.
doi: 10.1016/j.plantsci.2013.10.010 URL |
[45] |
YANG F X, ZHU G F, WANG Z, et al. A putative miR172-targeted CeAPETALA2-like gene is involved in floral patterning regulation of the orchid Cymbidium ensifolium[J]. Genetics and molecular research, 2015, 14(4):12049-12061.
doi: 10.4238/2015.October.5.18 URL |
[46] |
FRANCOIS L, VERDENAUD M, FU X, et al. A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses[J]. Scientific reports, 2018, 8(1):847-857.
doi: 10.1038/s41598-017-17386-y URL |
[47] |
GATTOLIN S, CIRILLI M, PACHECO I, et al. Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae[J]. The plant journal, 2018, 96(2):358-371.
doi: 10.1111/tpj.14036 URL |
[48] | DAI Z, WANG J, ZHU M, et al. OsMADS1 represses microRNA172 in elongation of palea/lemma development in rice[J]. Frontiers in plant science, 2016, 7:1891-1900. |
[49] |
DEBERNARDI J M, GREENWOOD J R, FINNEGAN E J, et al. APETALA 2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat[J]. The plant journal, 2020, 101(1):171-187.
doi: 10.1111/tpj.14528 URL |
[50] |
ANWAR N, OHTA M, YAZAWA T, et al. miR172 downregulates the translation of cleistogamy 1 in barley[J]. Annals of botany, 2018, 122(2):251-265.
doi: 10.1093/aob/mcy058 URL |
[51] | 张文政, 韩颖颖, 严钦骅, 等. 拟南芥miR172a-1/b-2/c对多种胁迫响应的研究[J]. 复旦学报:自然科学版, 2011, 50(3):328-333,395. |
[52] | HWANG E W, SHIN S J, PARK S C, et al. Identification of miR172 family members and their putative targets responding to drought stress in Solanum tuberosum[J]. Cell, 2011, 33(2):105-110. |
[53] |
ZOU Y, WANG S, ZHOU Y, et al. Transcriptional regulation of the immune receptor FLS2 controls the ontogeny of plant innate immunity[J]. The plant cell, 2018, 30(11):2779-2794.
doi: 10.1105/tpc.18.00297 URL |
[54] | 薛欢. 芥菜对Cd胁迫的生理响应及相关miRNA研究[D]. 长沙: 中南林业科技大学, 2020. |
[55] | 崔广荣, 刘士勋, 刘敏, 等. 文心兰茎尖组织培养的研究[J]. 种子, 2004, 23(12):16-19,23. |
[56] | 王培育. 文心兰miRNA在生长发育及抗软腐病中的应用研究[D]. 福州: 福建农林大学, 2018. |
[57] | 李杰. 番茄miR172的抗病功能研究[D]. 大连: 大连理工大学, 2015. |
[58] |
LUAN Y, CUI J, LI J, et al. Effective enhancement of resistance to Phytophthora infestans by overexpression of miR172a and b in Solanum lycopersicum[J]. Planta, 2018, 247(1):127-138.
doi: 10.1007/s00425-017-2773-x URL |
[59] | 李琳琳, 金华, 刘斯超, 等. 番茄茉莉酸缺失突变体灰霉菌侵染响应miRNA及其表达分析[J]. 园艺学报, 2020, 47(7):1323-1334. |
[60] | NAQVI A R, HAQ Q M, MUKHERJEE S K. MicroRNA profiling of tomato leaf curl new delhi virus (tolcndv) infected tomato leaves indicates that deregulation of miR159/319 and miR172 might be linked with leaf curl disease[J]. Biomed central, 2010, 7(1):281-296. |
[61] |
JI H, KIM H, YUN D W, et al. Characterization and fine mapping of a shortened uppermost internode mutant in rice[J]. Plant biotechnology reports, 2014, 8(2):125-134.
doi: 10.1007/s11816-013-0280-5 URL |
[62] |
JI H, HAN C D, LEE G S, et al. Mutations in the microRNA172 binding site of SUPERNUMERARY BRACT (SNB) suppress internode elongation in rice[J]. Rice, 2019, 12(1):62-75.
doi: 10.1186/s12284-019-0324-8 URL |
[63] |
AN W, GONG W, HE S, et al. MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum[J]. BMC genomics, 2015, 16(1):886-901.
doi: 10.1186/s12864-015-2071-6 URL |
[64] | PATIL V, MCDERMOTT H I, MCALLISTER T, et al. APETALA2 control of barley internode elongation[J]. Development, 2019, 146(11):dev.170373. |
[65] |
MURAMATSU M. Dosage effect of the spelta gene Q of hexaploid wheat[J]. Genetics, 1963, 48(4):469-482.
doi: 10.1093/genetics/48.4.469 URL |
[66] | HAEN K M, LU H, FRIESEN T L, et al. Genomic targeting and high-resolution mapping of the Tsn1 gene in wheat[J]. Crop Science, 2004, 44(3):951-962. |
[67] |
SIMONS K J, FELLERS J P, TRICK H N, et al. Molecular characterization of the major wheat domestication gene Q[J]. Genetics, 2006, 172(1):547-555.
doi: 10.1534/genetics.105.044727 URL |
[68] | ZHANG Z, BELCRAM H, GORNICKI P, et al. Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat[J]. Proceedings of the national academy of sciences of the United States of America, 2011, 108(46):18737-18742. |
[69] | DEBERNARDI J M, LIN H, CHUCK G, et al. microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability[J]. Development, 2017, 144(11):1966-1975. |
[70] |
LIU P, LIU J, DONG H, et al. Functional regulation of Q by microRNA172 and transcriptional co-repressor TOPLESS in controlling bread wheat spikelet density[J]. Plant biotechnology journal, 2018, 16(2):495-506.
doi: 10.1111/pbi.12790 URL |
[71] |
WANG L, SUN X, CHANG Q, et al. Effect of di-n-butyl phthalate (DBP) on the fruit quality of cucumber and the health risk[J]. Environmental science and pollution research, 2016, 23(23):24298-24304.
doi: 10.1007/s11356-016-7658-1 URL |
[72] | LAKHOTIA N, JOSHI G, BHARDWAJ A R, et al. Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing[J]. Biomed central, 2014, 14(1):6-21. |
[73] |
MARTIN A, ADAM H, DÍAZ-MENDOZA M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172[J]. Development, 2009, 136(17):2873-2881.
doi: 10.1242/dev.031658 URL |
[74] |
BHOGALE S, MAHAJAN A S, NATARAJAN B, et al. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena[J]. Plant physiology, 2014, 164(2):1011-1027.
doi: 10.1104/pp.113.230714 URL |
[75] |
WANG Y, WANG L, ZOU Y, et al. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation[J]. The plant cell, 2014, 26(12):4782-4801.
doi: 10.1105/tpc.114.131607 URL |
[76] |
NOVA-FRANCO B, ÍÑIGUEZ L P, VALDÉS-LÓPEZ O, et al. The micro-RNA172c-APETALA2-1 node as a key regulator of the common Bean-Rhizobium etli nitrogen fixation symbiosis[J]. Plant physiology, 2015, 168(1):273-291.
doi: 10.1104/pp.114.255547 URL |
[77] |
HOLT D B, GUPTA V, MEYER D, et al. microRNA172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules[J]. New phytologist, 2015, 208(1):241-256.
doi: 10.1111/nph.13445 URL |
[78] |
YAN Z, HOSSAIN M S, WANG J, et al. miR172 regulates soybean nodulation[J]. Molecular plant-microbe interactions, 2013, 26(12):1371-1377.
doi: 10.1094/MPMI-04-13-0111-R URL |
[1] | 孙歌, 接伟光, 胡崴, 张颖智, 乔巍, 魏丽娜, 姜怡彤, 白莉. 菌根真菌及菌根辅助细菌对农作物发育的影响研究进展[J]. 中国农学通报, 2022, 38(9): 88-92. |
[2] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[3] | 董寅壮, 王堽, 於丽华, 耿贵. 亚铁胁迫对甜菜幼苗矿质元素积累的影响[J]. 中国农学通报, 2022, 38(3): 11-16. |
[4] | 黄雅丽, 马风云, 王霞, 郝军, 杜振宇, 刘方春, 石群, 马丙尧. 滴灌水量对核桃幼苗生长的影响[J]. 中国农学通报, 2022, 38(22): 62-68. |
[5] | 方学良, 付铭, 陈正, 白云秀, 何莹, 曾汉来. 5-氮杂胞苷调节植物基因表达研究进展与应用展望[J]. 中国农学通报, 2022, 38(13): 30-35. |
[6] | 李怀德, 崔同霞, 范重秀, 姚友旭, 惠和平. 定植密度和生长年限对黄芩生长发育和产量及种植效益的影响[J]. 中国农学通报, 2022, 38(12): 41-46. |
[7] | 于红梅, 袁华招, 关玲, 陈晓东, 唐山远, 王庆莲, 赵密珍. 低温贮藏对草莓苗的生理变化及生长发育的影响[J]. 中国农学通报, 2021, 37(9): 35-41. |
[8] | 尹文露, 刘丽, 赵谭军, 韩森荣, 宋坚, 李莹莹, 常亚青, 湛垚垚. 海胆和海参中microRNAs的研究进展[J]. 中国农学通报, 2021, 37(7): 150-158. |
[9] | 宋磊, 次仁央金, 王小强, 何燕. 小麦对高温胁迫的响应机制研究进展[J]. 中国农学通报, 2021, 37(36): 6-12. |
[10] | 闫艳, 徐丽娜, 李丽杰, 张志勇. 玉米苗期生长发育对钾浓度的响应[J]. 中国农学通报, 2021, 37(35): 1-6. |
[11] | 王雪, 王盛昊, 于冰. 转录因子和启动子互作分析技术及其在植物应答逆境胁迫中的研究进展[J]. 中国农学通报, 2021, 37(33): 112-119. |
[12] | 陈路路, 孙哲, 田昌庚, 刘尚刚, 郑建利, 赵丰玲. 鲜食型紫薯新品种‘泰紫薯1号’的选育及生长发育规律研究[J]. 中国农学通报, 2021, 37(30): 25-31. |
[13] | 郭志祥, 何成兴, 普春晓, 陈福寿, 尚慧, 番华彩, 白亭亭, 曾莉. 草地贪夜蛾寄主选择性及对其生长发育的影响[J]. 中国农学通报, 2021, 37(3): 139-144. |
[14] | 王雅倩, 张尚昆, 李冬兵. 木醋液对元宝枫幼苗生长发育的影响[J]. 中国农学通报, 2021, 37(25): 41-46. |
[15] | 李志, 薛姣, 耿贵, 王宇光, 於丽华. 逆境胁迫下甜菜生理特性的研究进展[J]. 中国农学通报, 2021, 37(24): 39-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||