 
 中国农学通报 ›› 2021, Vol. 37 ›› Issue (33): 112-119.doi: 10.11924/j.issn.1000-6850.casb2021-0563
收稿日期:2021-05-28
									
				
											修回日期:2021-07-08
									
				
									
				
											出版日期:2021-11-25
									
				
											发布日期:2022-01-06
									
			通讯作者:
					于冰
							作者简介:王雪,女,1997年出生,黑龙江鸡西人,硕士研究生,研究方向:植物分子生物学。通信地址:150080 黑龙江省哈尔滨市学府路74号 黑龙江大学生命科学学院320室,Tel:15604506231,E-mail: 基金资助:
        
               		Wang Xue1,2( ), Wang Shenghao1,2, Yu Bing1,2(
), Wang Shenghao1,2, Yu Bing1,2( )
)
			  
			
			
			
                
        
    
Received:2021-05-28
									
				
											Revised:2021-07-08
									
				
									
				
											Online:2021-11-25
									
				
											Published:2022-01-06
									
			Contact:
					Yu Bing  			     					     	
							摘要:
转录因子是一类调节基因表达的重要调控蛋白,转录因子和与其结合的启动子中的相关顺式作用元件,在基因表达方面起着分子开关的作用,因此探究转录因子与启动子的相互作用尤为重要。为了研究在植物遭受逆境胁迫时,转录因子对下游靶基因的调控机制,本文综述了参与逆境胁迫的主要转录因子家族、转录因子的转录激活活性鉴定、转录因子和启动子互作分析技术及其在植物应答逆境胁迫中的应用,为全面、深入研究植物应答逆境胁迫时的基因表达调控机制提供参考。
中图分类号:
王雪, 王盛昊, 于冰. 转录因子和启动子互作分析技术及其在植物应答逆境胁迫中的研究进展[J]. 中国农学通报, 2021, 37(33): 112-119.
Wang Xue, Wang Shenghao, Yu Bing. Interaction Analysis of Transcription Factors and Promoters and Its Application in Response of Plants to Stress[J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 112-119.
| 逆境类型 | 物种 | 转录因子 | 转录因子家族 | 靶基因 | 作用元件 | 参考文献 | 
|---|---|---|---|---|---|---|
| 青枯雷尔氏菌 | 辣椒 Capsicum annuum L. | CaWRKY40 | WRKY | CaC3H14 | W-box | [ | 
| 干旱 | 水稻 Oryza sativa L. | OsSNAC1 | NAC | OsSNAC1TGDs | NACRS、ABRE | [ | 
| 葡萄座腔菌 | 苹果 Malus domestica (Suckow) Borkh. | MdWRKY15 | WRKY | MdICS1 | W-box | [ | 
| 高温 | 核桃 Juglans regia L. | JrGRAS2 | GRAS | JrDof3 | DOFCOREZM | [ | 
| 逆境类型 | 物种 | 转录因子 | 转录因子家族 | 靶基因 | 作用元件 | 参考文献 | 
|---|---|---|---|---|---|---|
| 青枯雷尔氏菌 | 辣椒 Capsicum annuum L. | CaWRKY40 | WRKY | CaC3H14 | W-box | [ | 
| 干旱 | 水稻 Oryza sativa L. | OsSNAC1 | NAC | OsSNAC1TGDs | NACRS、ABRE | [ | 
| 葡萄座腔菌 | 苹果 Malus domestica (Suckow) Borkh. | MdWRKY15 | WRKY | MdICS1 | W-box | [ | 
| 高温 | 核桃 Juglans regia L. | JrGRAS2 | GRAS | JrDof3 | DOFCOREZM | [ | 
| 逆境类型 | 物种 | 转录因子 | 转录因子家族 | 靶基因 | 作用元件 | 参考文献 | |
|---|---|---|---|---|---|---|---|
| 大丽轮枝菌 | 棉花 Gossypium hirsutum L. | GhNAC100 | NAC | GhPR3 | CGTA-box | [ | |
| 霜霉病菌 | 大豆 Glycine max (L.) Merr. | GmWRKY31 | WRKY | GmSAGT1 | W-box | [ | |
| 冷胁迫 | 虎百合 Lilium lancifolium L. | LlMYB3 | MYB | LlCHS2 | – | [ | |
| 盐胁迫 | 水稻 Oryza sativa L. | OsPCF2、OsCPP5、OsNIN-like2~4 | TCP、CPP、NIN-like | OsNHX1 | – | [ | |
| 逆境类型 | 物种 | 转录因子 | 转录因子家族 | 靶基因 | 作用元件 | 参考文献 | |
|---|---|---|---|---|---|---|---|
| 大丽轮枝菌 | 棉花 Gossypium hirsutum L. | GhNAC100 | NAC | GhPR3 | CGTA-box | [ | |
| 霜霉病菌 | 大豆 Glycine max (L.) Merr. | GmWRKY31 | WRKY | GmSAGT1 | W-box | [ | |
| 冷胁迫 | 虎百合 Lilium lancifolium L. | LlMYB3 | MYB | LlCHS2 | – | [ | |
| 盐胁迫 | 水稻 Oryza sativa L. | OsPCF2、OsCPP5、OsNIN-like2~4 | TCP、CPP、NIN-like | OsNHX1 | – | [ | |
| [1] | Aditya B, Aryadeep R. WRKY Proteins: Signaling and regulation of expression during abiotic stress responses[J]. Scientific World Journal, 2015(2015):1-17. | 
| [2] | Rodziewicz P, Swarcewicz B, Chmielewska K, et al. Influence of abiotic stresses on plant proteome and metabolome changes[J]. Acta Physiologiae Plantarum, 2014, 36(1):1-19. doi: 10.1007/s11738-013-1402-y URL | 
| [3] | Bari R, Jones J D. Role of plant hormones in plant defence responses[J]. Plant molecular biology, 2009, 69(4):473-488. doi: 10.1007/s11103-008-9435-0 URL | 
| [4] | Wang Y, Xu W, Chen Z, et al. Gene structure, expression pattern and interaction of Nuclear Factor-Y family in castor bean (Ricinus communis)[J]. Planta, 2018, 247(3):559-572. doi: 10.1007/s00425-017-2809-2 pmid: 29119268 | 
| [5] | Sun T, Wang C, Liu R, et al. ThHSFA1 Confers Salt Stress Tolerance through Modulation of Reactive Oxygen Species Scavenging by Directly Regulating ThWRKY4[J]. International journal of molecular sciences, 2021, 22(9):30-33. doi: 10.3390/ijms22010030 URL | 
| [6] | Wang Y, Mao Z, Jiang H, et al. A feedback loop involving MdMYB108L and MdHY5 controls apple cold tolerance[J]. Biochemical and Biophysical Research Communications, 2019, 512(2):381-386. doi: 10.1016/j.bbrc.2019.03.101 URL | 
| [7] | 王翠, 兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展[J]. 生命科学研究, 2016, 20(4):358-364. | 
| [8] | Puranik S, Sahu P, Srivastava P, et al. NAC proteins: regulation and role in stress tolerance[J]. Trends Plant Sci, 2012, 17(6):369-381. doi: 10.1016/j.tplants.2012.02.004 pmid: 22445067 | 
| [9] | Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003, 10(6):239-47. doi: 10.1093/dnares/10.6.239 URL | 
| [10] | 荣欢, 任师杰, 汪梓坪, 等. 植物NAC转录因子的结构及功能研究进展[J]. 江苏农业科学, 2020, 48(18):44-53. | 
| [11] | Podzimska D, O'Shea C, Gregersen P, et al. NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops[J]. Plants, 2015, 4(3):412-48. doi: 10.3390/plants4030412 URL | 
| [12] | Chi Y, Yang Y, Zhou Y, et al. Protein-protein interactions in the regulation of WRKY transcription factors[J]. Mol Plant, 2013, 6(2):287-300. doi: 10.1093/mp/sst026 URL | 
| [13] | Llorca C, Potschin M, Zentgraf U. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies[J]. Front Plant Sci, 2014, 5:169. | 
| [14] | 禹阳, 贾赵东, 马佩勇, 等. WRKY转录因子在植物抗病反应中的功能研究进展[J]. 分子植物育种, 2018, 16(21):7009-7020. | 
| [15] | Kolonko M, Greb B. bHLH-PAS Proteins: Their Structure and Intrinsic Disorder[J]. Int J Mol Sci, 2019, 20(15):3653. doi: 10.3390/ijms20153653 URL | 
| [16] | Sun X, Wang Y, Sui N. Transcriptional regulation of bHLH during plant response to stress[J]. Biochem Biophys Res Commun, 2018, 503(2):397-401. doi: 10.1016/j.bbrc.2018.07.123 URL | 
| [17] | Du J, Zhai L, Guo D. Progress in bHLH transcription factors regulating the response to iron deficiency in plants[J]. Sheng Wu Gong Cheng Xue Bao, 2019, 35(5):766-774. | 
| [18] | 惠甜, 沈兵琪, 王连春, 等. 桑树bHLH转录因子家族全基因组鉴定与分析[J]. 分子植物育种, 2019, 17(17):5624-5637. | 
| [19] | Pireyre M, Burow M. Regulation of MYB and bHLH transcription factors: a glance at the protein level[J]. Mol Plant, 2015, 8(3):378-88. doi: 10.1016/j.molp.2014.11.022 pmid: 25667003 | 
| [20] | Gu C, Guo Z, Hao P P, et al. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm[J]. Bot Stud, 2017, 58(1):6. doi: 10.1186/s40529-016-0159-1 URL | 
| [21] | Xie Z, Nolan T, Jiang H, et al. AP2/ERF Transcription Factor Regulatory Networks in Hormone and Abiotic Stress Responses in Arabidopsis[J]. Front Plant Sci, 2019, 10:228. doi: 10.3389/fpls.2019.00228 URL | 
| [22] | Zhang J, Wang Q, Guo Z. Progresses on plant AP2/ERF transcription factors[J]. Yi Chuan, 2012, 34(7):835-47. doi: 10.3724/SP.J.1005.2012.00835 URL | 
| [23] | 陈珂, 张君, 刘嘉斐, 等. 绿豆AP2/ERF转录因子家族的生物信息学鉴定与特征分析[J]. 分子植物育种, 2020, 18(20):6605-6617. | 
| [24] | Srivastava R, Kumar R. The expanding roles of APETALA2/Ethylene Responsive Factors and their potential applications in crop improvement[J]. Brief Funct Genomics, 2018, 18(4):240-254. doi: 10.1093/bfgp/elz001 pmid: 30783669 | 
| [25] | Seo M, Kim J. Understanding of MYB Transcription Factors Involved in Glucosinolate Biosynjournal in Brassicaceae[J]. Molecules, 2017, 22(9):1549. doi: 10.3390/molecules22091549 URL | 
| [26] | Li J, Han G, Sun C, et al. Research advances of MYB transcription factors in plant stress resistance and breeding[J]. Plant Signal Behav, 2019, 14(8): 1613131. | 
| [27] | Millard P S, Kragelund B B, Burow M. R2R3 MYB Transcription Factors - Functions outside the DNA-Binding Domain[J]. Trends Plant Sci, 2019, 24(10):934-946. doi: S1360-1385(19)30166-9 pmid: 31358471 | 
| [28] | Ma D, Constabel C. MYB Repressors as Regulators of Phenylpropanoid Metabolism in Plants[J]. Trends Plant Sci, 2019, 24(3):275-289. doi: 10.1016/j.tplants.2018.12.003 URL | 
| [29] | 李爽. 转录因子AREB1与组蛋白修饰H3K9ac协同调控毛果杨应答干旱胁迫的机制研究[D]. 哈尔滨:东北林业大学, 2019. | 
| [30] | Liang K, Wang A, Yuan Y, et al. Picea wilsonii NAC transcription factor PwNAC30 negatively regulates abiotic stress tolerance in transgenic Arabidopsis[J]. Plant Molecular Biology Reporter, 2020, 6:1-18. | 
| [31] | Li S, Lin Y, Wang P, et al. The AREB1 Transcription Factor Influences Histone Acetylation to Regulate Drought Responses and Tolerance in Populus trichocarpa[J]. The Plant cell, 2019, 31(3):663-686. doi: 10.1105/tpc.18.00437 URL | 
| [32] | Orlando V, Strutt H, Paro R. Analysis of chromatin structure by in vivo formaldehyde cross-linking[J]. Methods, 1997, 11:205-214. pmid: 8993033 | 
| [33] | Duband I. Lamin ChIP from chromatin prepared by micrococcal nuclease digestion[J]. Methods Mol Biol, 2016, 1411:325-339. doi: 10.1007/978-1-4939-3530-7_21 pmid: 27147052 | 
| [34] | Gade P, Kalvakolanu D. Chromatin immunoprecipitation assay as a tool for analyzing transcription factor activity[J]. Methods Mol Biol, 2012, 809:85-104. | 
| [35] | Kumar N, Mukhopadhyay A. Using ChIP-Based Approaches to Characterize FOXO Recruitment to its Target Promoters[J]. Methods in molecular biology (Clifton, N.J.), 2019, 1890:115-130. | 
| [36] | Kim T, Dekker J. ChIP-chip[J]. Cold Spring Harb Protoc, 2018(5). | 
| [37] | 李敏俐, 王薇, 陆祖宏. ChIP技术及其在基因组水平上分析DNA与蛋白质相互作用[J]. 遗传, 2010, 32(03):219-228. | 
| [38] | Cortijo S, Charoensawan V, Roudier F, et al. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis[J]. Methods in molecular biology (Clifton, N.J.), 2018, 1761:231-248. | 
| [39] | Bhatia S, Matthews J, Wells P G. Characterization of Epigenetic Histone Activation/Repression Marks in Sequences of Genes by Chromatin Immunoprecipitation-Quantitative Polymerase Chain Reaction (ChIP-qPCR)[J]. Methods Mol Biol, 2019, 1965:389-403. doi: 10.1007/978-1-4939-9182-2_25 pmid: 31069688 | 
| [40] | Guiducci C, Spiga F. Another transistor-based revolution: on-chip qPCR[J]. Nat Methods, 2013, 10(7):617-8. doi: 10.1126/science.10.252.617.a URL | 
| [41] | Galas D, Schmitz A. DNase footprinting: a simple method for the detection of protein-DNA binding specificity[J]. Nucleic Acids Res, 1978, 5:3157-3170. pmid: 212715 | 
| [42] | 李圣彦, 郎志宏, 黄大昉. 真核生物启动子研究概述[J]. 生物技术进展, 2014, 4(3):158-164. | 
| [43] | Leblanc B, Moss T. In Vitro DNase I Footprinting[J]. Methods in molecular biology (Clifton, N.J.), 2015, 1334:17-27. | 
| [44] | 徐冬冬, 刘德培, 吕湘, 等. 固相DNaseⅠ足迹法研究DNA-蛋白质相互作用[J], 生物化学与生物物理进展, 2001, 28(4):587-589. | 
| [45] | Sandaltzopoulos R, Becker P. Solid phase DNase I footprinting: quick and versatile[J]. Nucleic Acids Res, 1994, 22(8):1511-1512. pmid: 8190649 | 
| [46] | Unterholzner S, Rozhon W, Poppenberger B. Analysis of In Vitro DNA Interactions of Brassinosteroid-Controlled Transcription Factors Using Electrophoretic Mobility Shift Assay[J]. Methods in molecular biology (Clifton, N.J.), 2017, 1564:133-144. | 
| [47] | Seo M, Lei L, Egli M. Label-Free Electrophoretic Mobility Shift Assay (EMSA) for Measuring Dissociation Constants of Protein-RNA Complexes[J]. Current protocols in nucleic acid chemistry, 2019, 76(1). | 
| [48] | Daras G, Alatzas A, Tsitsekian D, et al. Detection of RNA-protein interactions using a highly sensitive non-radioactive electrophoretic mobility shift assay[J]. Electrophoresis, 2019, 40(9):1365-1371. doi: 10.1002/elps.v40.9 URL | 
| [49] | García V, Sanz C. Interactions of DNA and Proteins: Electrophoretic Mobility Shift Assay in Asthma.[J]. Methods in molecular biology (Clifton, N.J.), 2016, 1434:91-105. | 
| [50] | Li J, Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system[J]. Science, 1993, 262:1870-1874 pmid: 8266075 | 
| [51] | 陈峰, 李洁, 张贵友, 等. 酵母单杂交的原理与应用实例[J]. 生物工程进展, 2001(4):57-62. | 
| [52] | 刘玮, 单雷, 唐桂英, 等. 花生AhbHLH1参与调控FAD2基因在种子中表达的研究[C]. 2015年学术年会论文摘要集, 2015: 49. | 
| [53] | Kang S, Breton G, Pruneda-Paz J. Construction of Arabidopsis Transcription Factor ORFeome Collections and Identification of Protein-DNA Interactions by High-Throughput Yeast One-Hybrid Screens[J]. Methods in molecular biology (Clifton, N.J.), 2018, 1794:151-182. | 
| [54] | 廖名湘, 方福德. 酵母单杂交体系——一种研究DNA-蛋白质相互作用的有效方法[J]. 中国医学科学院学报, 2000(4):388-391. | 
| [55] | Qiu A, Lei Y, Yang S, et al. CaC3H14 Encoding a Tandem CCCH Zinc Finger Protein Is Directly Targeted by CaWRKY40 and Positively Regulates the Response of Pepper to Inoculation by Ralstonia solanacearum[J]. Molecular Plant Pathology, 2018, 19(10):2221-2235. doi: 10.1111/mpp.2018.19.issue-10 URL | 
| [56] | Li X, Chang Y, Ma S, et al. Genome-Wide Identification of SNAC1-Targeted Genes Involved in Drought Response in Rice[J]. Frontiers in plant science, 2019, 10:982. doi: 10.3389/fpls.2019.00982 URL | 
| [57] | Zhao X, Qi C, Jiang H, et al. MdWRKY15 improves resistance of apple to Botryosphaeria dothidea via the salicylic acid-mediated pathway by directly binding the MdICS1 promoter[J]. Journal of integrative plant biology, 2020, 62(4):527-543. doi: 10.1111/jipb.v62.4 URL | 
| [58] | Yang G, Gao X, Ma K, et al. The walnut transcription factor JrGRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression[J]. BMC plant biology, 2018, 18(1):367. doi: 10.1186/s12870-018-1568-y URL | 
| [59] | Shao Y, Yit H, Peter S. The global regulator of pathogenesis PnCon7 positively regulates Tox3 effector gene expression through direct interaction in the wheat pathogen Parastagonospora nodorum[J]. Molecular Microbiology, 2018, 109(1). | 
| [61] | Grec S, Vanham D, Ribaucourt J, et al. Identification of regulatory sequence elements within the transcription promoter region of NpABC1, a gene encoding a plant ABC transporter induced by diterpenes[J]. The Plant journal: for cell and molecular biology, 2003, 35(2):237-250. doi: 10.1046/j.1365-313X.2003.01792.x URL | 
| [62] | Zhang L, Xu Z, Ji H, et al. TaWRKY40 transcription factor positively regulate the expression of TaGAPC1 to enhance drought tolerance[J]. BMC genomics, 2019, 20(1):795. doi: 10.1186/s12864-019-6178-z pmid: 31666006 | 
| [63] | Zheng X, Yang J, Lou T, et al. Transcriptome Profile Analysis Reveals that CsTCP14 Induces Susceptibility to Foliage Diseases in Cucumber[J]. International journal of molecular sciences, 2019, 20(10):2582. doi: 10.3390/ijms20102582 URL | 
| [64] | Zhao X, Qi C, Jiang H, et al. MdHIR4 transcription and translation levels associated with disease in apple are regulated by MdWRKY31[J]. Plant molecular biology, 2019, 101(1-2):149-162. doi: 10.1007/s11103-019-00898-8 URL | 
| [65] | Zhao X, Qi C, Jiang H, et al. MdWRKY15 improves resistance of apple to Botryosphaeria dothidea via the salicylic acid-mediated pathway by directly binding the MdICS1 promoter[J]. Journal of Integrative Plant Biology, 2020, 62(4):527-543. doi: 10.1111/jipb.v62.4 URL | 
| [66] | Zhang L, Song Z, Li F, et al. The specific MYB binding sites bound by TaMYB in the GAPCp2/3 promoters are involved in the drought stress response in wheat[J]. BMC plant biology, 2019, 19(1):366. doi: 10.1186/s12870-019-1948-y pmid: 31426752 | 
| [67] | Hu G, Lei Y, Liu J, et al. The ghr-miR164 and GhNAC100 modulate cotton plant resistance against Verticillium dahlia[J]. Plant Science, 2020, 293:110438. doi: 10.1016/j.plantsci.2020.110438 URL | 
| [68] | Dong H, Tan J, Li M, et al. Transcriptome analysis of soybean WRKY TFs in response to Peronospora manshurica infection[J]. Genomics, 2019, 111(6):1412-1422. doi: 10.1016/j.ygeno.2018.09.014 URL | 
| [69] | Yong Y, Zhang Y, Lyu Y. A MYB-Related Transcription Factor from Lilium lancifolium L. (LlMYB3) Is Involved in Anthocyanin Biosynjournal Pathway and Enhances Multiple Abiotic Stress Tolerance in Arabidopsis thaliana[J]. International journal of molecular sciences, 2019, 20(13):3195. doi: 10.3390/ijms20133195 URL | 
| [70] | Almeida D, Gregorio B, Oliveira M, et al. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype[J]. Plant molecular biology, 2017, 93(1-2):61-77. doi: 10.1007/s11103-016-0547-7 pmid: 27766460 | 
| [1] | 巩永永, 端木慧子. 甜菜TIFY基因家族的全基因组鉴定与生物信息学分析[J]. 中国农学通报, 2022, 38(8): 17-24. | 
| [2] | 余兰, 王浩然, 张莹, 邢红运, 丁琪, 赵宝珍, 崔娜. 转录因子MYCs调控番茄表皮毛萜类化合物的分子机制研究进展[J]. 中国农学通报, 2022, 38(6): 87-93. | 
| [3] | 徐晓美, 李颖, 衡周, 徐小万, 李涛, 王恒明. 响应辣椒疫霉菌诱导的CaWRKY转录因子筛选及其信号通路分析[J]. 中国农学通报, 2022, 38(32): 22-31. | 
| [4] | 马贵芳, 辛海波, 修莉, 孙朝霞, 张华. 荞麦脱壳性状的研究进展[J]. 中国农学通报, 2022, 38(24): 19-27. | 
| [5] | 王晨, 张居萍, 丁晗. miR172调控植物生长发育及逆境胁迫的研究进展[J]. 中国农学通报, 2022, 38(17): 27-34. | 
| [6] | 马慧敏, 孙培琳, 马春泉. 转录因子BvM14-GAI耐盐功能研究[J]. 中国农学通报, 2021, 37(34): 34-42. | 
| [7] | 孙铭阳, 徐世强, 顾艳, 梅瑜, 周芳, 李静宇, 王继华. 穿心莲全长转录组测序及特性分析[J]. 中国农学通报, 2021, 37(27): 82-89. | 
| [8] | 李志, 薛姣, 耿贵, 王宇光, 於丽华. 逆境胁迫下甜菜生理特性的研究进展[J]. 中国农学通报, 2021, 37(24): 39-47. | 
| [9] | 杜晓雪, 黄园园, 马春泉, 李海英. 转录因子BvM14-Dof3.4响应盐胁迫的功能研究[J]. 中国农学通报, 2021, 37(21): 119-125. | 
| [10] | 刘恺媛, 王茂良, 辛海波, 张华, 丛日晨, 黄大庄. 植物花青素合成与调控研究进展[J]. 中国农学通报, 2021, 37(14): 41-51. | 
| [11] | 李英, 杜春梅. 致病性尖孢镰刀菌毒力因子的研究进展[J]. 中国农学通报, 2021, 37(12): 92-97. | 
| [12] | 谭景发, 贺文闯, 董西龙, 党腾飞, 谢怿, 席锟, 孙勇胜, 胡亚林, 靳德明. 不同水稻种质中渗透胁迫抗性基因DREB2A的遗传多样性分析[J]. 中国农学通报, 2020, 36(35): 1-13. | 
| [13] | 曹德宸, 叶磊, 李维庆, 李赛男, 高冬妮, 葛菁萍. 含有不同启动子、WPRE以及ITRs对重组杆状病毒表达新城疫F蛋白的影响[J]. 中国农学通报, 2020, 36(30): 91-97. | 
| [14] | 于冰,田烨,李海英,吕笑言,王宇光,端木慧子. 植物bHLH转录因子的研究进展[J]. 中国农学通报, 2019, 35(9): 75-80. | 
| [15] | 朱长保,徐辰峰,刘仁梅. 干旱胁迫下水稻转录因子表达变化[J]. 中国农学通报, 2019, 35(6): 108-114. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||