中国农学通报 ›› 2022, Vol. 38 ›› Issue (8): 17-24.doi: 10.11924/j.issn.1000-6850.casb2021-0831
收稿日期:
2021-08-31
修回日期:
2021-11-03
出版日期:
2022-03-15
发布日期:
2022-04-06
通讯作者:
端木慧子
作者简介:
巩永永,男,1998年出生,陕西商洛人,硕士,研究方向:植物分子生态学。通信地址:150080 黑龙江省哈尔滨市学府路74号 黑龙江大学生命科学学院320室,E-mail: 基金资助:
GONG Yongyong1,2,3(), DUANMU Huizi1,2,3()
Received:
2021-08-31
Revised:
2021-11-03
Online:
2022-03-15
Published:
2022-04-06
Contact:
DUANMU Huizi
摘要:
TIFY转录因子对植物体生长发育和胁迫响应有重要调控作用,本研究目的在于鉴定分析甜菜(Beta vulgaris L.)中的TIFY转录因子。试验以甜菜基因组数据为基础,利用生物信息学技术在全基因组水平鉴定并分析甜菜TIFY家族成员。结果表明:甜菜中共有21条TIFY基因,基因间序列相似性较低;共线性分析发现只有BvTIFY15与BvTIFY18之间存在基因复制事件;BvTIFY转录因子家族包括2个TIFY蛋白、8个JAZ蛋白、6个ZML蛋白、5个PPD蛋白;蛋白互作预测发现,JAZ家族成员对JA信号有重要的调控作用。本研究对BvTIFY基因的结构与功能进行分析,发掘出甜菜根中应答盐胁迫基因BvTIFY13与BvTIFY15,为后续BvTIFY基因的功能研究提供一定理论基础。
中图分类号:
巩永永, 端木慧子. 甜菜TIFY基因家族的全基因组鉴定与生物信息学分析[J]. 中国农学通报, 2022, 38(8): 17-24.
GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis[J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24.
基因名 | 转录本编号 | 染色体 | 基因组位置 | 编码区/bp | 蛋白质/aa | 分子量/kDa | 等电点pI |
---|---|---|---|---|---|---|---|
BvTIFY1 | XM_010693544.2 | 1 | 177868-181625 | 1047 | 348 | 35.97 | 9.47 |
BvTIFY2 | XM_010693545.2 | 1 | 177868-181625 | 1047 | 348 | 35.97 | 9.47 |
BvTIFY3 | XM_010673165.2 | 1 | 6039574-6047256 | 1041 | 346 | 37.72 | 5.74 |
BvTIFY4 | XM_019248305.1 | 1 | 6039574-6047256 | 1041 | 346 | 37.72 | 5.74 |
BvTIFY5 | XM_010673216.2 | 1 | 6072808-6079282 | 894 | 297 | 32.88 | 5.94 |
BvTIFY6 | XM_010673225.2 | 1 | 6072808-6079282 | 888 | 295 | 32.64 | 5.94 |
BvTIFY7 | XM_010672448.2 | 2 | 39383795-39388815 | 1119 | 372 | 39.43 | 8.71 |
BvTIFY8 | XM_010695474.2 | 3 | 1037984-1064949 | 1059 | 352 | 38.47 | 8.49 |
BvTIFY9 | XM_010695475.2 | 3 | 1037984-1064949 | 1056 | 351 | 38.32 | 8.5 |
BvTIFY10 | XM_010695476.2 | 3 | 1037984-1064949 | 1050 | 349 | 38.14 | 8.49 |
BvTIFY11 | XM_010695477.2 | 3 | 1037984-1064949 | 1047 | 348 | 38.01 | 8.49 |
BvTIFY12 | XM_010695478.2 | 3 | 1037984-1064949 | 999 | 332 | 36.2 | 8.78 |
BvTIFY13 | XM_010684365.2 | 6 | 53385701-53390451 | 597 | 198 | 22.26 | 8.61 |
BvTIFY14 | XM_010697784.2 | 7 | 241127-253491 | 900 | 299 | 32.87 | 5.94 |
BvTIFY15 | XM_010686977.2 | 7 | 36091600-36094215 | 777 | 258 | 29.34 | 9.24 |
BvTIFY16 | XM_010688927.2 | 8 | 19534025-19540778 | 1050 | 349 | 36.08 | 8.53 |
BvTIFY17 | XM_010688928.2 | 8 | 19534025-19540778 | 1047 | 348 | 36.01 | 8.53 |
BvTIFY18 | XM_010689246.2 | 8 | 27921059-27923721 | 756 | 251 | 26.84 | 9.9 |
BvTIFY19 | XM_010690498.1 | 9 | 2254102-2256859 | 375 | 124 | 14.16 | 9.18 |
BvTIFY20 | XM_010693082.2 | 9 | 42035878-42046926 | 1062 | 353 | 38.85 | 4.97 |
BvTIFY21 | XM_010668415.1 | Unknown | 29321-30954 | 372 | 123 | 13.71 | 9.21 |
基因名 | 转录本编号 | 染色体 | 基因组位置 | 编码区/bp | 蛋白质/aa | 分子量/kDa | 等电点pI |
---|---|---|---|---|---|---|---|
BvTIFY1 | XM_010693544.2 | 1 | 177868-181625 | 1047 | 348 | 35.97 | 9.47 |
BvTIFY2 | XM_010693545.2 | 1 | 177868-181625 | 1047 | 348 | 35.97 | 9.47 |
BvTIFY3 | XM_010673165.2 | 1 | 6039574-6047256 | 1041 | 346 | 37.72 | 5.74 |
BvTIFY4 | XM_019248305.1 | 1 | 6039574-6047256 | 1041 | 346 | 37.72 | 5.74 |
BvTIFY5 | XM_010673216.2 | 1 | 6072808-6079282 | 894 | 297 | 32.88 | 5.94 |
BvTIFY6 | XM_010673225.2 | 1 | 6072808-6079282 | 888 | 295 | 32.64 | 5.94 |
BvTIFY7 | XM_010672448.2 | 2 | 39383795-39388815 | 1119 | 372 | 39.43 | 8.71 |
BvTIFY8 | XM_010695474.2 | 3 | 1037984-1064949 | 1059 | 352 | 38.47 | 8.49 |
BvTIFY9 | XM_010695475.2 | 3 | 1037984-1064949 | 1056 | 351 | 38.32 | 8.5 |
BvTIFY10 | XM_010695476.2 | 3 | 1037984-1064949 | 1050 | 349 | 38.14 | 8.49 |
BvTIFY11 | XM_010695477.2 | 3 | 1037984-1064949 | 1047 | 348 | 38.01 | 8.49 |
BvTIFY12 | XM_010695478.2 | 3 | 1037984-1064949 | 999 | 332 | 36.2 | 8.78 |
BvTIFY13 | XM_010684365.2 | 6 | 53385701-53390451 | 597 | 198 | 22.26 | 8.61 |
BvTIFY14 | XM_010697784.2 | 7 | 241127-253491 | 900 | 299 | 32.87 | 5.94 |
BvTIFY15 | XM_010686977.2 | 7 | 36091600-36094215 | 777 | 258 | 29.34 | 9.24 |
BvTIFY16 | XM_010688927.2 | 8 | 19534025-19540778 | 1050 | 349 | 36.08 | 8.53 |
BvTIFY17 | XM_010688928.2 | 8 | 19534025-19540778 | 1047 | 348 | 36.01 | 8.53 |
BvTIFY18 | XM_010689246.2 | 8 | 27921059-27923721 | 756 | 251 | 26.84 | 9.9 |
BvTIFY19 | XM_010690498.1 | 9 | 2254102-2256859 | 375 | 124 | 14.16 | 9.18 |
BvTIFY20 | XM_010693082.2 | 9 | 42035878-42046926 | 1062 | 353 | 38.85 | 4.97 |
BvTIFY21 | XM_010668415.1 | Unknown | 29321-30954 | 372 | 123 | 13.71 | 9.21 |
[14] |
WHITE D W. PEAPOD regulates lamina size and curvature in rabidopsis[J]. Proc. natl. acad. sci. USA, 2006, 103(35):13238-13243.
doi: 10.1073/pnas.0604349103 URL |
[15] |
BAI Y H, MENG Y J, HUANG D L, et al. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family[J]. Genomics, 2011, 98(2):128-136.
doi: 10.1016/j.ygeno.2011.05.002 URL |
[16] | 刘蕊, 刘乃新, 吴玉梅, 等. 甜菜MYB转录因子生信分析及种子萌发期差异表达[J]. 中国农学通报, 2019, 35(25):54-65. |
[17] | 刘乃新, 吴玉梅. 甜菜ARF基因家族生信分析及种子萌发期差异表达[J]. 中国农学通报, 2020, 36(26):22-28. |
[18] | 韩秉进, 朱向明. 中国甜菜生产发展历程及现状分析[J]. 土壤与作物, 2016, 5(2):91-95. |
[19] |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data[J]. Molecular plant, 2020, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[20] |
KIMOTHO R N, BAILLO E H, ZHANG Z. Transcription factors involved in abiotic stress responses in Maize (Zea mays L.) and their roles in enhanced productivity in the post genomics era[J]. Peerj, 2019, 7(1):e7211.
doi: 10.7717/peerj.7211 URL |
[21] |
BOWERS J E, CHAPMAN B A, RONG J, et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events[J]. Nature, 2003, 422(6930):433-438.
doi: 10.1038/nature01521 URL |
[22] |
WANG Y, TANG H, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic acids research, 2012, 40(7):e49.
doi: 10.1093/nar/gkr1293 URL |
[23] |
ZHAO P, WANG D, WANG R, et al. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress[J]. BMC genomics, 2018, 19(1):61.
doi: 10.1186/s12864-018-4443-1 URL |
[24] |
YANG L, SU D, CHANG X, et al. Phylogenomic Insights into Deep Phylogeny of Angiosperms Based on Broad Nuclear Gene Sampling[J]. Plant communications, 2020, 1(2):100027.
doi: 10.1016/j.xplc.2020.100027 URL |
[25] |
LONG M. Gene Duplication and Evolution[J]. Science, 2001, 293(5535):1551.
doi: 10.1126/science.293.5535.1551a URL |
[26] | 胡利宗, 李超琼, 张雯露, 等. 菜豆TIFY基因的全基因组鉴定与系统进化分析[J]. 分子植物育种, 2020, 18(10):32-40. |
[27] |
WASTERNACK C. Action of jasmonates in plant stress responses and development -Applied aspects[J]. Biotechnology advances, 2014, 32(1):31-39.
doi: 10.1016/j.biotechadv.2013.09.009 URL |
[28] |
SHEARD L B, XU T, MAO H, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-AZ co-receptor[J]. Nature, 2010, 468(7322):400-405.
doi: 10.1038/nature09430 URL |
[29] |
ACOSTA I F, GASPERINI D, CHETELAT A, et al. Role of NINJA in root jasmonate signaling[J]. Proc natl acad sci USA, 2013, 110(38):15473-15478.
doi: 10.1073/pnas.1307910110 URL |
[30] | HUANG H, HUA G, LIU B, et al. bHLH13 Regulates Jasmonate-Mediated Defense Responses and Growth[J]. Evolutionary Bioinformatics online, 2018, 14:1-8. |
[31] |
SCHULER M A. Functional genomics of P450s[J]. Annual review of plant biology, 2003, 54(1):629-667.
doi: 10.1146/arplant.2003.54.issue-1 URL |
[1] |
VANHOLME B, GRUNEWALD W, BATEMAN A, et al. The tify family previously known as ZIM[J]. Trends in plant science, 2007, 12(6):239-244.
doi: 10.1016/j.tplants.2007.04.004 URL |
[2] |
杨锐佳, 张中保, 吴忠义. 植物转录因子TIFY家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2020, 36(12):121-128.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0307 |
[3] | NISHII A, TAKEMURA M, FUJITA H, et al. Characterization of a Novel Gene Encoding a Putative Single Zinc-finger Protein, ZIM, Expressed during the Reproductive Phase in Arabidopsis thaliana[J]. Journal of the agricultural chemical society of Japan, 2000, 64(7):1402-1409. |
[4] |
YE H Y, DU H, TANG N, et al. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice[J]. Plant molecular biology, 2009, 71(3):291-305.
doi: 10.1007/s11103-009-9524-8 URL |
[5] |
ZHANG Y, GAO M, SINGER S D, et al. Genome-Wide Identification and Analysis of the TIFY Gene Family in Grape[J]. PLoS one, 2012, 7(9):e44465.
doi: 10.1371/journal.pone.0044465 URL |
[6] |
ZHU D, BAI X, LUO X, et al. Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress[J]. Plant cell reports, 2013, 32(2):263-272.
doi: 10.1007/s00299-012-1360-7 URL |
[7] |
EBEL C, BENKEFI A, HANIN M, et al. Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum Durum TdTIFY11a in salt stress tolerance[J]. PloS one, 2018, 13(7):e0200566.
doi: 10.1371/journal.pone.0200566 URL |
[8] |
HEIDARI P, FARAJI S, AHMADIZADEH M, et al. New Insights Into Structure and Function of TIFY Genes in Zea mays and Solanum lycopersicum: A Genome-Wide Comprehensive Analysis[J]. Frontiers in genetics, 2021, 12:657970.
doi: 10.3389/fgene.2021.657970 URL |
[9] |
AMPARO C P, ASTRID N D, ROBIN V B, et al. The Non-JAZ TIFY Protein TIFY8 from Arabidopsis thaliana Is a Transcriptional Repressor[J]. PLoS one, 2014, 9(1):e84891.
doi: 10.1371/journal.pone.0084891 URL |
[10] | 魏昕, 刘雨恒, 刘宇阳, 等. 植物JAZ蛋白家族研究进展[J]. 植物生理学报, 2021, 57(5):1039-1046. |
[11] |
STASWICK P E. JAZing up jasmonate signaling[J]. Trends in plant science, 2008, 13(2):66-71.
doi: 10.1016/j.tplants.2007.11.011 URL |
[12] |
CHINI A, FONSECA S, FERNANDEZ G, et al. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 2007, 448(7154):666-671.
doi: 10.1038/nature06006 URL |
[13] |
CHUNG H Y, SUNTER G. Interaction between the transcription factor AtTIFY4B and begomovirus AL2 protein impacts pathogenicity[J]. Plant molecular biology, 2014, 86(1):185-200.
doi: 10.1007/s11103-014-0222-9 URL |
[1] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[2] | 陈英花, 白如霄, 王娟, 张新疆, 刘玲慧, 刘小龙, 冯国瑞, 危常州. 叶面喷施烯效唑和硼对塔额盆地甜菜产量和含糖率的影响[J]. 中国农学通报, 2022, 38(9): 41-48. |
[3] | 王琳玉, 蒋依辰, 于清洋, 吴则东, 邳植. 甜菜组蛋白去乙酰化酶(HDACs)基因家族鉴定及功能预测[J]. 中国农学通报, 2022, 38(8): 9-16. |
[4] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[5] | 余兰, 王浩然, 张莹, 邢红运, 丁琪, 赵宝珍, 崔娜. 转录因子MYCs调控番茄表皮毛萜类化合物的分子机制研究进展[J]. 中国农学通报, 2022, 38(6): 87-93. |
[6] | 王盛昊, 于冰. 甜菜M14品系BvM14-UNG基因克隆及生物信息学分析[J]. 中国农学通报, 2022, 38(4): 16-22. |
[7] | 刘镎, 胡华兵, 王荣华, 刘小越, 刘朝阳, 刘晓晗, 王茂芊. 甲醇老化处理对甜菜种子发芽的影响[J]. 中国农学通报, 2022, 38(33): 28-33. |
[8] | 徐晓美, 李颖, 衡周, 徐小万, 李涛, 王恒明. 响应辣椒疫霉菌诱导的CaWRKY转录因子筛选及其信号通路分析[J]. 中国农学通报, 2022, 38(32): 22-31. |
[9] | 王佳琦, 张子萱, 刘乃新. 外源硒处理条件下红甜菜苗期矿物质积累特性分析[J]. 中国农学通报, 2022, 38(32): 1-5. |
[10] | 赵雅儒, 邳植, 刘蕊, 马语嫣, 吴则东. 不同甜菜单胚细胞质雄性不育系与保持系的遗传多样性分析[J]. 中国农学通报, 2022, 38(30): 35-40. |
[11] | 董寅壮, 王堽, 於丽华, 耿贵. 亚铁胁迫对甜菜幼苗矿质元素积累的影响[J]. 中国农学通报, 2022, 38(3): 11-16. |
[12] | 石杨, 尹希龙, 李王胜, 兴旺. PEG模拟干旱胁迫对耐旱型与干旱敏感型甜菜种质形态指标的影响[J]. 中国农学通报, 2022, 38(29): 45-51. |
[13] | 唐玲, 孙思琦, 闫桦, 刘亚昕, 刘大丽. 甜菜红素提取与纯化技术的研究进展[J]. 中国农学通报, 2022, 38(28): 136-142. |
[14] | 周艳丽, 刘娜, 於丽华, 卢秉福, 张文彬, 刘晓雪. 土壤机械压实及其对作物生长的影响[J]. 中国农学通报, 2022, 38(28): 83-88. |
[15] | 张琼, 王锦霞, 孟诗琪, 钟鑫爱, 刘大丽, 兴旺. 甜菜热激蛋白基因BvHSP18.2的克隆和生物信息学分析[J]. 中国农学通报, 2022, 38(27): 111-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||