中国农学通报 ›› 2022, Vol. 38 ›› Issue (27): 111-118.doi: 10.11924/j.issn.1000-6850.casb2022-0222
张琼1,2(), 王锦霞1,2,3, 孟诗琪1,2, 钟鑫爱1,2, 刘大丽1,2, 兴旺1,2()
收稿日期:
2022-03-30
修回日期:
2022-06-15
出版日期:
2022-10-05
发布日期:
2022-09-21
通讯作者:
兴旺
作者简介:
张琼,女,1996年出生,山西临汾人,研究生在读,研究方向:作物分子生物学。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学现代农业与生态环境学院,Tel:18435998652,E-mail: 基金资助:
ZHANG Qiong1,2(), WANG Jinxia1,2,3, MENG Shiqi1,2, ZHONG Xin’ai1,2, LIU Dali1,2, XING Wang1,2()
Received:
2022-03-30
Revised:
2022-06-15
Online:
2022-10-05
Published:
2022-09-21
Contact:
XING Wang
摘要:
旨在通过基因克隆及生物信息学分析,预测甜菜小分子热激蛋白BvHSP18.2 (LOC104903994)的功能。以甜菜‘780016B/12优’为试验材料克隆BvHSP18.2,获得BvHSP18.2基因全长;通过ProtParam tool、SWISS-MODEL、MEGA11等对BvHSP18.2的理化性质、蛋白结构、多序列比对等信息进行分析。RT-PCR扩增得到的BvHSP18.2基因全长为962 bp,编码158个氨基酸,分子式为C928H1466N266O284S6,属亲水性不稳定的小分子热激蛋白家族;该基因编码蛋白含13个磷酸化位点,α螺旋和无规则卷曲等主要构件。进化关系发现BvHSP18.2与藜麦、菠菜的sHSP同源性相似。同时,BvHSP18.2基因启动子区域具有参与防御和应激反应等顺式作用元件,推测其在甜菜生长发育和胁迫应答中发挥重要作用。本结果为进一步开展该基因的功能和遗传调控机制研究奠定了基础。
中图分类号:
张琼, 王锦霞, 孟诗琪, 钟鑫爱, 刘大丽, 兴旺. 甜菜热激蛋白基因BvHSP18.2的克隆和生物信息学分析[J]. 中国农学通报, 2022, 38(27): 111-118.
ZHANG Qiong, WANG Jinxia, MENG Shiqi, ZHONG Xin’ai, LIU Dali, XING Wang. Sugar Beet Heat-shock Protein Gene BvHSP18.2: Cloning and Bioinformatics Analysis[J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 111-118.
元件名称 | 位置 | 序列 | 功能 |
---|---|---|---|
A-box | 687+ | CCGTCC | 顺式作用调节元件 |
AAGAA-motif | 1472- | GAAAGAA | |
AE-box | 396- | AGAAACAA | 光响应模块的一部分 |
ARE | 567- | AAACCA | 顺式作用调节元件对无氧诱导至关重要 |
AT-rich sequence | 674+ | TAAAATACT | 激发子介导的最大激活元件(2个) |
AT~TATA-box | 510+ | TATATA | |
Box 4 | 343+ 1443- 756+ 1853- | ATTAAT | 参与光响应的保守DNA模块的一部分 |
CAAT-box | 35+ 37- 44- 231- 303- 409+ 452+ 499- 521+ 528- 622- 637+ 669+ 760- 769+ 782+ 813+ 844+ 853+ 875- 975+ 1083+ 1359- 1390- 1441+ 1502+ 1624+ 1731+ 1734- 1783- 1796+ 1877+ 1910+ 1962+1963+ 1964+ | CAAT CAAAT | 启动子和增强子区域的 共同顺式作用元件 |
CARE | 1053+ | CAACTCCC | |
CAT-box | 178- | GCCACT | 与分生组织表达相关的顺式作用调节元件 |
CCAAT-box | 1301- 1707- | CAACGG | MYBHv1结合位点 |
CCGTCC motif | 687+ | CCGTCC | |
CCGTCC-box | 687+ | CCGTCC | |
CGTCA-motif | 666+ | CGTCA | 参与MeJA反应的顺式作用调节元件 |
ERE | 652+ | ATTTTAAA | |
G-box | 1431- | TAACACGTAG | 参与光响应的顺式调节元件 |
GATA-motif | 609+ 1672- | AAGGATAAGG GATAGGA | 光响应元件的一部分 |
GCN4_motif | 596+ | TGAGTCA | 参与胚乳表达的顺式调控元件 |
GT1-motif | 617+ 1426- 956- | GGTTAAT GGTTAA | 光响应元件 |
MRE | 6+ 1428+ | AACCTAA | MYB结合位点参与光响应 |
MYB recognition site | 1301+ 1707+ | CCGTTG | |
MYC | 1624- 1877- | CATTTG | |
STRE | 236+ 1244+ 1193+ 1379- 1063+ 1227- | AGGGG | |
TATA | 63+ 672+ | TATAAAAT | |
TATA-box | 63+ 297- 299+ 305- 307+ 480- 481- 482- 483- 484+ 509- 510+ 512+ 671+ 672+ 698+ 834+ 856+ 1318- 1330- 1331- 1332- 1333- 1364+ 1509+ 1588- 1611- 1613- 1653+ 1654- 1655- 1743- 1983+ 1984- | TATA TATACA CCTATAAAAA TATAAAA TATAAA TATAA | 转录起始点-30左右的核心启动子元件 |
TC-rich repeats | 1635+ | GTTTTCTTAC | 参与防御和应激反应的顺式作用元件 |
TCA-element | 658- | CCATCTTTTT | 参与水杨酸反应的顺式作用元件 |
TCCC-motif | 148- | TCTCCCT | 光响应元件的一部分 |
TCT-motif | 1639+ 1677+ | TCTTAC | 光响应元件的一部分 |
TGACG-motif | 666- | TGACG | 参与MeJA反应的顺式作用调节元件 |
元件名称 | 位置 | 序列 | 功能 |
---|---|---|---|
A-box | 687+ | CCGTCC | 顺式作用调节元件 |
AAGAA-motif | 1472- | GAAAGAA | |
AE-box | 396- | AGAAACAA | 光响应模块的一部分 |
ARE | 567- | AAACCA | 顺式作用调节元件对无氧诱导至关重要 |
AT-rich sequence | 674+ | TAAAATACT | 激发子介导的最大激活元件(2个) |
AT~TATA-box | 510+ | TATATA | |
Box 4 | 343+ 1443- 756+ 1853- | ATTAAT | 参与光响应的保守DNA模块的一部分 |
CAAT-box | 35+ 37- 44- 231- 303- 409+ 452+ 499- 521+ 528- 622- 637+ 669+ 760- 769+ 782+ 813+ 844+ 853+ 875- 975+ 1083+ 1359- 1390- 1441+ 1502+ 1624+ 1731+ 1734- 1783- 1796+ 1877+ 1910+ 1962+1963+ 1964+ | CAAT CAAAT | 启动子和增强子区域的 共同顺式作用元件 |
CARE | 1053+ | CAACTCCC | |
CAT-box | 178- | GCCACT | 与分生组织表达相关的顺式作用调节元件 |
CCAAT-box | 1301- 1707- | CAACGG | MYBHv1结合位点 |
CCGTCC motif | 687+ | CCGTCC | |
CCGTCC-box | 687+ | CCGTCC | |
CGTCA-motif | 666+ | CGTCA | 参与MeJA反应的顺式作用调节元件 |
ERE | 652+ | ATTTTAAA | |
G-box | 1431- | TAACACGTAG | 参与光响应的顺式调节元件 |
GATA-motif | 609+ 1672- | AAGGATAAGG GATAGGA | 光响应元件的一部分 |
GCN4_motif | 596+ | TGAGTCA | 参与胚乳表达的顺式调控元件 |
GT1-motif | 617+ 1426- 956- | GGTTAAT GGTTAA | 光响应元件 |
MRE | 6+ 1428+ | AACCTAA | MYB结合位点参与光响应 |
MYB recognition site | 1301+ 1707+ | CCGTTG | |
MYC | 1624- 1877- | CATTTG | |
STRE | 236+ 1244+ 1193+ 1379- 1063+ 1227- | AGGGG | |
TATA | 63+ 672+ | TATAAAAT | |
TATA-box | 63+ 297- 299+ 305- 307+ 480- 481- 482- 483- 484+ 509- 510+ 512+ 671+ 672+ 698+ 834+ 856+ 1318- 1330- 1331- 1332- 1333- 1364+ 1509+ 1588- 1611- 1613- 1653+ 1654- 1655- 1743- 1983+ 1984- | TATA TATACA CCTATAAAAA TATAAAA TATAAA TATAA | 转录起始点-30左右的核心启动子元件 |
TC-rich repeats | 1635+ | GTTTTCTTAC | 参与防御和应激反应的顺式作用元件 |
TCA-element | 658- | CCATCTTTTT | 参与水杨酸反应的顺式作用元件 |
TCCC-motif | 148- | TCTCCCT | 光响应元件的一部分 |
TCT-motif | 1639+ 1677+ | TCTTAC | 光响应元件的一部分 |
TGACG-motif | 666- | TGACG | 参与MeJA反应的顺式作用调节元件 |
[1] | 刘莉. 饲用甜菜的生物学特性及种植技术[J]. 现代畜牧科技, 2021(9):72-74. |
[2] |
GAMBA M, RAGUINDIN P F, ASLLANAJ E, et al. Bioactive compounds and nutritional composition of Swiss chard (Beta vulgaris L. var. cicla and flavescens): a systematic review[J]. Critical reviews in food science and nutrition, 2021, 61(20):3465-3480.
doi: 10.1080/10408398.2020.1799326 URL |
[3] |
CHEN Q, YU F, XIE Q. Insights into endoplasmic reticulum-associated degradation in plants[J]. New phytologist, 2020, 226(2):345-350.
doi: 10.1111/nph.16369 URL |
[4] |
ANDERSON N S, HAYNES C M. Folding the mitochondrial UPR into the integrated stress response[J]. Trends in cell biology, 2020, 30(6):428-439.
doi: 10.1016/j.tcb.2020.03.001 URL |
[5] | BAKER B M, NARGUND A M, SUN T, et al. Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2[J]. Plos genetics, 2012, 8(6):e1002760. |
[6] |
HSU S K, CHIU C C, DAHMS H U, et al. Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells[J]. International journal of molecular sciences, 2019, 20(10):2518.
doi: 10.3390/ijms20102518 URL |
[7] |
CABISCOL E, BELLI G, TAMARIT J, et al. Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae[J]. Journal of biological chemistry, 2002, 277(46):44531-44538.
doi: 10.1074/jbc.M206525200 URL |
[8] |
WATERS E R, LEE G J, VIERLING E. Evolution, structure and function of the small heat shock proteins in palnts[J]. Journal of experimental botany, 1996, 47(296):325-338.
doi: 10.1093/jxb/47.3.325 URL |
[9] |
JI X R, YU Y H, NI P Y, et al. Genome-wide identification of small heat-shock protein (HSP20) gene family in grape and expression profile during berry development[J]. Bmc plant biology, 2019, 19(1):1-15.
doi: 10.1186/s12870-018-1600-2 URL |
[10] |
BARNA J, CSERMELY P, VELLAI T. Roles of heat shock factor 1 beyond the heat shock response[J]. Cellular and molecular life sciences, 2018, 75(16):2897-2916.
doi: 10.1007/s00018-018-2836-6 URL |
[11] |
CHO E K, HONG C B. Molecular cloning and expression pattern analyses of heat shock protein 70 genes from Nicotiana tabacum[J]. Journal of plant biology, 2004, 47(2):149-159.
doi: 10.1007/BF03030646 URL |
[12] |
RITOSSA F. A new puffing pattern induced by temperature shock and DNP in Drosophila[J]. Experientia, 1962, 18(12):571-573.
doi: 10.1007/BF02172188 URL |
[13] |
TISSIERES A, MITCHELL H K, TRACY U M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs[J]. Journal of molecular biology, 1974, 84(3):389-398.
doi: 10.1016/0022-2836(74)90447-1 URL |
[14] |
BARNETT T, ALTSCHULER M, MCDANIEL C N, et al. Heat shock induced proteins in plant cells[J]. Developmental genetics, 1979, 1(4):331-340.
doi: 10.1002/dvg.1020010406 URL |
[15] |
WANG W, VINOCUR B, SHOSEYOV O, et al. Role of plant heat shock proteins and molecular chaperones in the abiotic stress response[J]. Trends in plant science, 2004, 9:244-252.
doi: 10.1016/j.tplants.2004.03.006 URL |
[16] | LIU X, ZHAO L, LI J, et al. The chloroplastic small heat shock protein gene KvHSP26 is induced by various abiotic stresses in Kosteletzkya virginica[J]. International journal of genomics, 2021, 2021:1-9. |
[17] |
HAYASHI J, CARVER J A. The multifaceted nature of αB-crystallin[J]. Cell stress and chaperones, 2020, 25(4):639-654.
doi: 10.1007/s12192-020-01098-w URL |
[18] | WATERS E R. The evolution, function, structure, anf expression of the plant sHSPs[J]. Tournal of experimental botany, 2013, 64(2):391-403. |
[19] |
SCHARF K D, SIDDIQUE M, VIERLING E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins)[J]. Cell stress & chaperones, 2001, 6(3):225.
doi: 10.1379/1466-1268(2001)006<0225:TEFOAT>2.0.CO;2 URL |
[20] | YU J, CHENG Y, FENG K, et al. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses[J]. Frontiers in plant science, 2016, 7:1215. |
[21] |
OUYANG Y, CHEN J, XIE W, et al. Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice[J]. Plant molecular biology, 2009, 70(3):341-357.
doi: 10.1007/s11103-009-9477-y URL |
[22] |
LOPES-CAITAR V S, DE CARVALHO M C, DARBEN L M, et al. Genome-wide analysis of the Hsp20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses[J]. Bmc genomics, 2013, 14(1):1-17.
doi: 10.1186/1471-2164-14-1 URL |
[23] |
LIU H, LYU H M, ZHU K, et al. The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families[J]. The plant journal, 2021, 105(4):1072-1082.
doi: 10.1111/tpj.15088 URL |
[24] | 孙爱清, 葛淑娟, 董伟, 等. 玉米小分子热激蛋白ZmHSP17.7基因的克隆与功能分析[J]. 作物学报, 2015, 41(3):414-421. |
[25] | 史文君. 蓝莓VcMYB、VcHSP17.7基因功能研究和叶片再生体系的建立[D]. 北京: 北京林业大学, 2017. |
[26] | 宋奇琦, 张小秋, 宋修鹏, 等. 甘蔗HSP20基因克隆、原核表达及逆境胁迫响应[J]. 植物生理学报, 2022, 58(2):371-380. |
[27] | 秦智伟, 张君鸣, 辛明, 等. 黄瓜CsHSP20基因克隆和生物信息学分析[J]. 东北农业大学学报, 2020, 51(9):26-33. |
[28] |
WATERS E R, VIERLING E. Plant small heat shock proteins-evolutionary and functional diversity[J]. The new phytologist, 2020, 227(1):24-37.
doi: 10.1111/nph.16536 URL |
[29] | MORALES A, ZURITA-SILVA A, MALDONADO J, et al. Transcriptional responses of Chilean quinoa (Chenopodium quinoa Willd.) under water deficit conditions uncovers ABA-independent expression patterns[J]. Frontiers in plant science, 2017, 8: 216. |
[30] |
YAN J, YU L, XUAN J, et al. De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress[J]. Scientific reports, 2016, 6(1):1-10.
doi: 10.1038/s41598-016-0001-8 URL |
[31] |
DAFNY-YELIN M, TZFIRA T, VAINSTEIN A, et al. Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis[J]. Plant molecular biology, 2008, 67(4):363-373.
doi: 10.1007/s11103-008-9326-4 URL |
[32] |
ZHAO P, WANG D, WANG R, et al. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress[J]. Bmc genomics, 2018, 19(1):1-13.
doi: 10.1186/s12864-017-4368-0 URL |
[33] |
LEE K W, CHA J Y, KIM K H, et al. Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress[J]. Biotechnology letters, 2012, 34(1):167-174.
doi: 10.1007/s10529-011-0750-1 URL |
[34] | 俞佳虹. 番茄小热激蛋白SlHsp20基因家族的全基因组鉴定及表达分析[D]. 杭州: 浙江师范大学, 2017. |
[1] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[2] | 陈英花, 白如霄, 王娟, 张新疆, 刘玲慧, 刘小龙, 冯国瑞, 危常州. 叶面喷施烯效唑和硼对塔额盆地甜菜产量和含糖率的影响[J]. 中国农学通报, 2022, 38(9): 41-48. |
[3] | 巩永永, 端木慧子. 甜菜TIFY基因家族的全基因组鉴定与生物信息学分析[J]. 中国农学通报, 2022, 38(8): 17-24. |
[4] | 王琳玉, 蒋依辰, 于清洋, 吴则东, 邳植. 甜菜组蛋白去乙酰化酶(HDACs)基因家族鉴定及功能预测[J]. 中国农学通报, 2022, 38(8): 9-16. |
[5] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[6] | 张宇阳, 周雪, 刘灵艺, 许吴俊, 任旭琴, 王广龙, 熊爱生. 大蒜几丁质酶基因AsCHI1的鉴定及其对盐胁迫的响应[J]. 中国农学通报, 2022, 38(5): 23-29. |
[7] | 王盛昊, 于冰. 甜菜M14品系BvM14-UNG基因克隆及生物信息学分析[J]. 中国农学通报, 2022, 38(4): 16-22. |
[8] | 刘镎, 胡华兵, 王荣华, 刘小越, 刘朝阳, 刘晓晗, 王茂芊. 甲醇老化处理对甜菜种子发芽的影响[J]. 中国农学通报, 2022, 38(33): 28-33. |
[9] | 王佳琦, 张子萱, 刘乃新. 外源硒处理条件下红甜菜苗期矿物质积累特性分析[J]. 中国农学通报, 2022, 38(32): 1-5. |
[10] | 赵雅儒, 邳植, 刘蕊, 马语嫣, 吴则东. 不同甜菜单胚细胞质雄性不育系与保持系的遗传多样性分析[J]. 中国农学通报, 2022, 38(30): 35-40. |
[11] | 董寅壮, 王堽, 於丽华, 耿贵. 亚铁胁迫对甜菜幼苗矿质元素积累的影响[J]. 中国农学通报, 2022, 38(3): 11-16. |
[12] | 石杨, 尹希龙, 李王胜, 兴旺. PEG模拟干旱胁迫对耐旱型与干旱敏感型甜菜种质形态指标的影响[J]. 中国农学通报, 2022, 38(29): 45-51. |
[13] | 唐玲, 孙思琦, 闫桦, 刘亚昕, 刘大丽. 甜菜红素提取与纯化技术的研究进展[J]. 中国农学通报, 2022, 38(28): 136-142. |
[14] | 周艳丽, 刘娜, 於丽华, 卢秉福, 张文彬, 刘晓雪. 土壤机械压实及其对作物生长的影响[J]. 中国农学通报, 2022, 38(28): 83-88. |
[15] | 杨然, 兴旺, 刘大丽, 吴则东, 王茂芊. 不同浓度褪黑素对甜菜种子的引发影响[J]. 中国农学通报, 2022, 38(27): 19-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||