[1] |
KROKAN H E, DRABLØS F, SLUPPHAUG G. Uracil in DNA-occurrence, consequences and repair[J]. Oncogene, 2002, 21(58):8935-48.
doi: 10.1038/sj.onc.1205996
URL
|
[2] |
GUILLET M, BOITEUX S. Origin of endogenous DNA abasic sites in saccharomyces cerevisiae[J]. Molecular and cellular biology, 2003, 23(22):8386-94.
doi: 10.1128/MCB.23.22.8386-8394.2003
URL
|
[3] |
CÓRDOBA-CAÑERO D, DUBOIS E, ARIZA R R, et al. Arabidopsis uracil DNA glycosylase (UNG) is required for base excision repair of uracil and increases plant sensitivity to 5-fluorouracil[J]. The Journal of biological chemistry, 2010, 285(10):7475-83.
doi: 10.1074/jbc.M109.067173
URL
|
[4] |
GUILLET M, VAN DER KEMP P A, Boiteux S. dUTPase activity is critical to maintain genetic stability in Saccharomyces cerevisiae[J]. Nucleic acids research, 2006, 34(7):2056-66.
doi: 10.1093/nar/gkl139
URL
|
[5] |
YI G S, WANG W W, CAO W G, et al. Sulfolobus acidocaldarius UDG can Remove dU from the RNA Backbone: Insight into the specific recognition of Uracil linked with deoxyribose[J]. Genes, 2017, 8(1).
|
[6] |
FORTINI P, DOGLIOTTI E. Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways[J]. DNA repair, 2007, 6(4):398-409.
doi: 10.1016/j.dnarep.2006.10.008
URL
|
[7] |
LINDAHL T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues[J]. Proceedings of the national academy of sciences of the United States of America, 1974, 71(9):3649-3653.
|
[8] |
鲍洪波, 王晋芳, 钱世钧. 尿嘧啶N糖基化酶(UNG)的研究进展[J]. 中国生物工程杂志, 2003(1):43-7.
|
[9] |
YOUSIF A S, STANLIE A, BEGUM N A. Opinion: uracil DNA glycosylase (UNG) plays distinct and non-canonical roles in somatic hypermutation and class switch recombination[J]. International immunology, 2014, 26(10):575-578.
doi: 10.1093/intimm/dxu071
URL
|
[10] |
KROKAN H E, OTTERLEI M, NILSEN H, et al. Properties and functions of human uracil-DNA glycosylase from the UNG gene[J]. Progress in nucleic acid research and molecular biology, 2001, 68:365-386.
|
[11] |
KARWOWSKI B T. The influence of (5'R)- and (5'S)-5',8-cyclo-2'-deoxyadenosine on UDG and hAPE1 activity. Tandem lesions are the base excision repair system's nightmare[J]. Cells, 2019, 8(11).366-377
doi: 10.3390/cells8040366
URL
|
[12] |
TRAVERS A, MUSKHELISHVILI G. DNA structure and function[J]. Bioessays news & reviews in molecular cellular & developmental biology, 2015, 282(12):2279-2295.
|
[13] |
PEARL L H. Structure and function in the uracil-DNA glycosylase superfamily[J]. Mutation research, 2000, 460(3-4):165-181.
doi: 10.1016/S0921-8777(00)00025-2
URL
|
[14] |
KROKAN H E, OTTERLEI M, NILSEN H, et al. Properties and functions of human uracil-DNA glycosylase from the UNG gene[J]. Progress in nucleic acid research and molecular biology, 2001, 68:365-386.
|
[15] |
FORTINI P, FERRETTI C, DOGLIOTTI E. The response to DNA damage during differentiation: pathways and consequences[J]. Mutation research, 2013, 743-744:160-168.
doi: 10.1016/j.mrfmmm.2013.03.004
URL
|
[16] |
BLAISDELL P, WARNER H. Partial purification and characterization of a uracil-DNA glycosylase from wheat germ[J]. The journal of biological chemistry, 1983, 258(3):1603-1609.
doi: 10.1016/S0021-9258(18)33027-8
URL
|
[17] |
BONES A M. Expression and occurrence of uracil-DNA glycosylase in higher plants[J]. Physiologia plantarum, 1993, 88(4):682-688.
doi: 10.1111/ppl.1993.88.issue-4
URL
|
[18] |
郭德栋, 方晓华, 刘丽萍, 等. 无融合生殖甜菜单体附加系的获得和鉴定[J]. 云南大学学报:自然科学版, 1999(S3):180-181.
|
[19] |
戈岩, 何光存, 王志伟, 等. 无融合生殖甜菜M14的GISH和BAC-FISH研究[J]. 中国科学, 2007(2):209-216.
|
[20] |
LI J, LI H, YANG N, et al. Overexpression of a monodehydroascorbate reductase gene from sugar beet M14 increased salt stress tolerance[J]. Sugar tech, 2021, 23(1):45-56.
doi: 10.1007/s12355-020-00877-0
URL
|
[21] |
WANG Y, ZHAN Y, WU C, et al. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance[J]. Plant science, 2012, 191-192:93-99.
doi: 10.1016/j.plantsci.2012.05.001
URL
|
[22] |
WU C, MA C, PAN Y, et al. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses[J]. Journal of plant research, 2013, 126(3):415-425.
doi: 10.1007/s10265-012-0532-4
URL
|
[23] |
赵冬美, 张咏雪, 李海英. 甜菜M14品系BvM14-STPK基因的生物信息学分析及响应盐胁迫的表达分析[J]. 中国农学通报, 2020, 36(1):35-42.
|
[24] |
CHATTERJEE N, WALKER G C. Mechanisms of DNA damage, repair, and mutagenesis[J]. Environmental and molecular mutagenesis, 2017, 58(5):235-263.
doi: 10.1002/em.v58.5
URL
|
[25] |
HUFFMAN J L, SUNDHEIM O, TAINER J A. DNA base damage recognition and removal: new twists and grooves[J]. Mutation research, 2005, 577(1-2):55-76.
doi: 10.1016/j.mrfmmm.2005.03.012
URL
|
[26] |
BACOLLA A, SENGUPTA S, YE Z, et al. Heritable pattern of oxidized DNA base repair coincides with pre-targeting of repair complexes to open chromatin[J]. Nucleic acids research, 2021, 49(1):221-243.
doi: 10.1093/nar/gkaa1120
URL
|