欢迎访问《中国农学通报》,

中国农学通报 ›› 2021, Vol. 37 ›› Issue (34): 34-42.doi: 10.11924/j.issn.1000-6850.casb2021-0696

• 生物科学 • 上一篇    下一篇

转录因子BvM14-GAI耐盐功能研究

马慧敏1,2(), 孙培琳1,2, 马春泉1,2()   

  1. 1黑龙江大学农业微生物技术教育部工程研究中心,哈尔滨 150500
    2黑龙江大学生命科学学院/黑龙江省普通高校分子生物学重点实验室,哈尔滨 150080
  • 收稿日期:2021-07-21 修回日期:2021-08-20 出版日期:2021-12-05 发布日期:2022-01-06
  • 通讯作者: 马春泉
  • 作者简介:马慧敏,女,1997年出生,黑龙江伊春人,硕士研究生,研究方向:植物分子生物学。通信地址:150080 黑龙江省哈尔滨市学府路74号 黑龙江大学生命科学学院320室,E-mail: mi937354428@163.com
  • 基金资助:
    国家自然科学基金“转录因子BvGT-I调控乙二醛酶I基因参与甜菜单体附加系耐盐的分子机制”(32072122)

Salt Tolerance Function of Transcription Factor BvM14-GAI

Ma Huimin1,2(), Sun Peilin1,2, Ma Chunquan1,2()   

  1. 1Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500
    2Key Laboratory of Molecular Biology, College of Heilongjiang Province/School of Life Sciences, Heilongjiang University, Harbin 150080
  • Received:2021-07-21 Revised:2021-08-20 Online:2021-12-05 Published:2022-01-06
  • Contact: Ma Chunquan

摘要:

转录因子在植物应答逆境胁迫过程中发挥着重要作用,GAI蛋白是植物转录因子家族的重要一员,对其研究主要集中在光响应机制领域,而该蛋白响应耐盐机制研究报道较少。实验室前期已经获得甜菜 M14品系盐胁迫转录组中上调表达基因BvM14-GAI的cDNA全长,本研究试图阐明该基因参与盐胁迫的功能。通过构建该基因植物表达载体,利用农杆菌介导花序浸染法转化拟南芥野生型和GAI基因突变株,检测150 mmol/L NaCl胁迫下异源表达和异源互补拟南芥植株的表型和生理生化指标。0 mmol/L NaCl处理时,以拟南芥野生型和GAI基因突变株为对照,异源表达和异源互补植株的根长、鲜重和干重均显著低于对照,说明BvM14-GAI基因为生长负调控因子;150 mmol/L NaCl胁迫处理后的根长、鲜重、干重及K+/Na+差异不显著,但甜菜碱、SOD和POD酶活性的含量显著增加,表明转录因子BvM14-GAI通过增强渗透调节和抗氧化酶系统提高异源表达和异源互补拟南芥植株的耐盐功能。研究结果不仅拓展了植物GAI基因响应非生物胁迫的功能,而且对阐明甜菜M14品系耐盐分子机制和培育耐盐作物品系具有一定研究价值。

关键词: 甜菜M14品系, BvM14-GAI基因, 盐胁迫, 转录因子, 抗氧化酶

Abstract:

Transcription factors play an important role in the process of plant response to adversity stress. GAI protein is an important member of the plant transcription factor family. About this protein, the research mainly focuses on the field of light response mechanism, while the protein response to salt tolerance mechanism is less reported. The full-length cDNA of BvM14-GAI gene, which is up-regulated in the transcriptome of the sugar beet M14 line under salt stress, is obtained in the early stage of the laboratory. This study aims to clarify the function of this gene in salt stress. By constructing the plant expression vector of BvM14-GAI gene, it is transformed into the Arabidopsis wild-type and GAI gene mutant plants by Agrobacterium-mediated inflorescence impregnation, then the phenotype and the indexes of the physiology and biochemistry of heterologous expression and heterologous complementary Arabidopsis plants under 150 mmol/L NaCl stress are detected. When treated with 0 mol/L NaCl, the root length, fresh weight and dry weight of heterologous expression and heterologous complementary Arabidopsis plants are significantly lower than those of the control group, indicating that BvM14-GAI gene is a negative growth regulator. After 150 mmol/L NaCl stress treatment, there is no significant difference in root length, fresh weight, dry weight and K +/Na+ of the transgenic plants, but the contents of betaine, the enzyme activities of SOD and POD of the transgenic plants increase significantly, indicating that the transcription factor BvM14-GAI could improve the salt tolerance function of heterologous expression and heterologous complementation Arabidopsis plants by enhancing osmotic regulation and antioxidant enzyme systems. The study not only expands the function of plant GAI gene in response to abiotic stress, but also has research value for elucidating the salt-tolerant molecular mechanism of sugar beet M14 line and cultivating salt-tolerant crop lines.

Key words: sugar beet M14 line, BvM14-GAI gene, salt stress, transcription factor, antioxidant enzyme

中图分类号: