| [1] | Bing Yu, Jinna Li, Jin Koh, et al. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress[J]. Journal of Proteomics, 2016, 143:286-297. doi: S1874-3919(16)30132-4    
																																																	pmid: 27233743
 | 
																													
																						| [2] | 邹奕, 吴则东, 兴旺, 等. 甜菜种质资源遗传多样性研究进展[J]. 中国糖料, 2018, 40(5):73-76,80. | 
																													
																						| [3] | 伍国强, 刘海龙, 李智强. 甜菜组织培养与植株再生体系的建立[J]. 中国糖料, 2018, 40(6):14-18. | 
																													
																						| [4] | 黄春燕, 苏文斌, 樊福义, 等. NaCl胁迫对不同苗龄甜菜生长及生理特性的影响[J]. 华北农学报, 2019, 34(5):163-169. | 
																													
																						| [5] | 郭德栋, 康传红, 刘丽萍, 等 异源三倍体甜菜(VVC)无融合生殖的研究[J]. 中国农业科学, 1999(4):3-7,113-114. | 
																													
																						| [6] | 杨乐. 盐胁迫下甜菜M14品系的比较蛋白质组学分析[D]. 哈尔滨:黑龙江大学, 2012. | 
																													
																						| [7] | 马春泉, 孙培琳, 李海英. BvM14-GAI基因的克隆及亚细胞定位[J]. 中国农学通报, 2020, 36(16):28-33. | 
																													
																						| [8] | 王玮, 管利萍, 张静, 等. 拟南芥DELLA蛋白编码基因RGA和GAI的原核表达和多克隆抗体制备[J]. 兰州大学学报:自然科学版, 2016, 52(3):422-428. | 
																													
																						| [9] | Blanco-Touriñán Noel, Serrano-Mislata Antonio, Alabadí David. Regulation of DELLA proteins by post-translational modifications[J]. Plant and Cell Physiology, 2020, 61(11):1891-1901. doi: 10.1093/pcp/pcaa113    
																																																	pmid: 32886774
 | 
																													
																						| [10] | 高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展[J]. 生物技术通报, 2018, 34(7):1-13. doi: 10.13560/j.cnki.biotech.bull.1985.2018-0447
 | 
																													
																						| [11] | Zhang Yongqiang, Liu Zhongjuan, Wang Xiaoyun, et al. DELLA proteins negatively regulate dark-induced senescence and chlorophyll degradation in Arabidopsis through interaction with the transcription factor WRKY6[J]. Plant Cell Reports, 2018, 37(7):981-992. doi: 10.1007/s00299-018-2282-9    
																																					URL
 | 
																													
																						| [12] | Antonio Serrano-Mislata, Stefano Bencivenga, Max Bush, et al.  DELLA genes restrict inflorescence meristem function independently of plant height[J]. Nature Plants, 2017, 3(9):749-754. doi: 10.1038/s41477-017-0003-y    
																																																	pmid: 28827519
 | 
																													
																						| [13] | Mingqi Zhou, Hu Chen, Donghui Wei, et al. Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature[J]. Scientific Reports, 2017, 7:39819. doi: 10.1038/srep39819    
																																																	pmid: 28051152
 | 
																													
																						| [14] | 王树林. 马铃薯StGRAS基因家族鉴定与StGAI基因克隆及其遗传转化[D]. 兰州:甘肃农业大学, 2019. | 
																													
																						| [15] | Patrick Achard, Hui Cheng, Liesbeth De Grauwe, et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science, 2006, 311. | 
																													
																						| [16] | Zang Dandan, Wang Chao, Ji Xiaoyu, et al. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities[J]. Plant Science, 2015, 235:111-121. doi: 10.1016/j.plantsci.2015.02.016    
																																																	pmid: 25900571
 | 
																													
																						| [17] | 王春生. 大豆GmGAI基因参与赤霉素调控开花时间的功能研究[D]. 哈尔滨:东北农业大学, 2020. | 
																													
																						| [18] | Saima Arain. 光通过调节拟南芥中GAI蛋白提高抗盐性[D]. 北京:中国农业科学院, 2013. | 
																													
																						| [19] | Takeshi Ito, Kanako Okada, Jutarou Fukazawa, et al. DELLA-dependent and -independent gibberellin signaling[J]. Plant Signaling & Behavior, 2018, 13(3):e1445933. | 
																													
																						| [20] | 李明, 冷冰莹, 张晗菡, 等. 盐胁迫下调控玉米胞内Na+/K+比稳定的主要机制与措施[J]. 山东农业科学, 2021, 53(6):133-138. | 
																													
																						| [21] | Wei Dandan, Zhang Wen, Wang Cuicui, et al. Genetic engineering of the biosynjournal of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants[J]. Plant Science, 2017, 257:74-83. doi: S0168-9452(16)30618-5    
																																																	pmid: 28224920
 | 
																													
																						| [22] | Yu Haoqiang, Wang Yingge, Yong Taiming, et al. Heterologous expression of betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus confers high salt and heat tolerance to Escherichia coli[J]. Gene, 2014, 549(1):77-84. doi: 10.1016/j.gene.2014.07.049    
																																																	pmid: 25046139
 | 
																													
																						| [23] | Lai Shujung, Lai Meichin, Lee Renjye, et al. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress[J]. Plant Molecular Biology, 2014, 85(4-5):429-441. doi: 10.1007/s11103-014-0195-8    
																																																	pmid: 24803410
 | 
																													
																						| [24] | 王南博. 西藏野生大麦耐旱特异蛋白与相关基因鉴定及外源甜菜碱缓解大麦干旱胁迫生理机理的研究[D]. 杭州:浙江大学, 2015. | 
																													
																						| [25] | Fan Weijuan, Zhang Min, Zhang Hongxia, et al. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase[J]. PLoS ONE, 2012, 7(5):e37344. doi: 10.1371/journal.pone.0037344    
																																					URL
 | 
																													
																						| [26] | Niu Xiangli, Xiong Fangjie, Liu Jia, et al. Co-expression of ApGSMT and ApDMT promotes biosynjournal of glycine betaine in rice (Oryza sativa L.) and enhances salt and cold tolerance[J]. Environmental and Experimental Botany, 2014, 104:16-25. doi: 10.1016/j.envexpbot.2014.03.003    
																																					URL
 | 
																													
																						| [27] | Yang Xinghong, Liang Zheng, Lu Congming. Genetic engineering of the biosynjournal of glycinebetaine enhances photosynjournal against high temperature stress in transgenic tobacco plants[J]. Plant Physiology, 2005, 138(4):2299-2309. pmid: 16024688
 | 
																													
																						| [28] | Li Shufen, Li Feng, Wang Jianwei, et al. Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings[J]. Plant, Cell & Environment, 2011, 34(11):1931-1943. | 
																													
																						| [29] | Song Jiuling, Zhang Rui, Yue Dan, et al. Co-expression of ApGSMT2g and ApDMT2g in cotton enhances salt tolerance and increases seed cotton yield in saline fields[J]. Plant Science, 2018, 274:369-382. doi: S0168-9452(18)30252-8    
																																																	pmid: 30080625
 | 
																													
																						| [30] | Mansour Mohamed Magdy F, Ali Esmat Farouq. Glycinebetaine in saline conditions: an assessment of the current state of knowledge[J]. Acta Physiologiae Plantarum, 2017, 39(2):1-17. doi: 10.1007/s11738-016-2300-x    
																																					URL
 |