中国农学通报 ›› 2022, Vol. 38 ›› Issue (35): 111-118.doi: 10.11924/j.issn.1000-6850.casb2021-1144
所属专题: 生物技术
收稿日期:
2021-11-29
修回日期:
2022-01-15
出版日期:
2022-12-15
发布日期:
2022-12-09
通讯作者:
杨琼
作者简介:
肖阳,女,1982年出生,湖南长沙人,副研究员,硕士研究生,主要从事家蚕育种与分子机理方面的研究。通信地址:510610 广东省广州市天河区东莞庄一横路蚕业所,Tel:020-89282649,E-mail:基金资助:
XIAO Yang(), LI Qingrong, XING Dongxu, YANG Qiong(
)
Received:
2021-11-29
Revised:
2022-01-15
Online:
2022-12-15
Published:
2022-12-09
Contact:
YANG Qiong
摘要:
探讨高温环境对家蚕血淋巴中抗氧化酶活性及其基因表达的影响,为家蚕对高温环境胁迫的应答生理与分子适应机制的揭示提供参考。本实验以高温耐受性家蚕品种932G与敏感性品种HY为研究对象,采用实时荧光定量PCR等方法测定高温胁迫下5龄幼虫血淋巴中的抗氧化酶活性及酶基因表达水平的变化。实验结果表明,受35℃高温胁迫后,耐受性品种与敏感性品种血淋巴中SOD、CAT和GST的相对酶活力变化趋势相似,均为胁迫前期变化幅度较小,中后期显著升高,胁迫后期显著降低,整体变化趋势为先升高后降低。酶基因相对表达水平与酶活变化趋势基本一致,在胁迫中后期出现不同程度的升高,胁迫后期有所降低,但品种间变化幅度有差异,BmSOD与绝大多数BmGSTs基因的相对表达量以耐受性品种的升高幅度较大,而BmCAT则以敏感性品种的升高幅度较大。由此可见,抗氧化酶SOD、CAT和GST在蚕体血淋巴组织中的高温响应趋势较为一致,仅在品种间存在变化幅度的差异。
中图分类号:
肖阳, 李庆荣, 邢东旭, 杨琼. 高温胁迫对耐受性不同的家蚕品种幼虫抗氧化酶活与基因表达的影响[J]. 中国农学通报, 2022, 38(35): 111-118.
XIAO Yang, LI Qingrong, XING Dongxu, YANG Qiong. Effects of High Temperature Stress on Antioxidant Enzyme Activity and Gene Expression in Larvae of Silkworm Varieties with Different Tolerance[J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 111-118.
基因 | 正向引物序列(5’-3’) | 正向引物序列(5’-3’) |
---|---|---|
BmSOD | CAGCTGGAGCTCATTTCAAC | TAAAGTGCGACCAATGATGC |
BmCAT | GACAGGGAGCGTATTCCAGA | CCACTCTCTCCACCAACTGT |
BmGST 1(GSTe1) | CCTGAAGGCCTGGCCAAAAT | TAGGCAAGAGCGCATCCAAA |
BmGST 2(GSTs1) | GGAAAGCTGACATGGGGTGA | AAGCCTTCACTTTGGGCTGT |
BmGST 4(GSTz1) | CACTGGATCACAAGGGGCTT | CAGTTCACGGTCTATGCGGA |
BmGST 5(GSTe2) | CGCAGATATCCAGGAAGCGT | ATCGACTGGCAACACACAGT |
BmGST 6(GSTo2) | ACTGCCGCAAGATCCTTTGA | AGAACACAGTGCCTCGGTTT |
BmGST 11(GSTe5) | TTGCCGGTGATGAGTTCTCC | ATCGGCAGTTGAGAGGAACG |
BmGST 12(GSTe6) | TGATCAAGAACATCGAGGATGC | TCTGTTTATCCATTTGCTTTTCTCA |
BmGST 13(GSTo4) | CGTGGCACAAGATTTCTCGG | GTATTGACTGACGGCGGGAT |
BmGST d1 | CTCAGCACACAATCCCGACT | GTCGATAATGGCACGTTGGC |
BmGST d2 | TGGTGAACAAGTACGCCAAAG | ACCTTCTCGTTCTTGGCCTTG |
BmGST d3 | CGCTTTGGACCTACAGCTCA | ACTGCTACTGTCTCCTCCGT |
sw22934 | TCCAAAAATGGGCCATCGAA | TGCTGGATTGCAGAAGGTTT |
基因 | 正向引物序列(5’-3’) | 正向引物序列(5’-3’) |
---|---|---|
BmSOD | CAGCTGGAGCTCATTTCAAC | TAAAGTGCGACCAATGATGC |
BmCAT | GACAGGGAGCGTATTCCAGA | CCACTCTCTCCACCAACTGT |
BmGST 1(GSTe1) | CCTGAAGGCCTGGCCAAAAT | TAGGCAAGAGCGCATCCAAA |
BmGST 2(GSTs1) | GGAAAGCTGACATGGGGTGA | AAGCCTTCACTTTGGGCTGT |
BmGST 4(GSTz1) | CACTGGATCACAAGGGGCTT | CAGTTCACGGTCTATGCGGA |
BmGST 5(GSTe2) | CGCAGATATCCAGGAAGCGT | ATCGACTGGCAACACACAGT |
BmGST 6(GSTo2) | ACTGCCGCAAGATCCTTTGA | AGAACACAGTGCCTCGGTTT |
BmGST 11(GSTe5) | TTGCCGGTGATGAGTTCTCC | ATCGGCAGTTGAGAGGAACG |
BmGST 12(GSTe6) | TGATCAAGAACATCGAGGATGC | TCTGTTTATCCATTTGCTTTTCTCA |
BmGST 13(GSTo4) | CGTGGCACAAGATTTCTCGG | GTATTGACTGACGGCGGGAT |
BmGST d1 | CTCAGCACACAATCCCGACT | GTCGATAATGGCACGTTGGC |
BmGST d2 | TGGTGAACAAGTACGCCAAAG | ACCTTCTCGTTCTTGGCCTTG |
BmGST d3 | CGCTTTGGACCTACAGCTCA | ACTGCTACTGTCTCCTCCGT |
sw22934 | TCCAAAAATGGGCCATCGAA | TGCTGGATTGCAGAAGGTTT |
基因 | 品种 | 高温胁迫时间/h | ||||||
---|---|---|---|---|---|---|---|---|
1 | 6 | 12 | 18 | 24 | 36 | 48 | ||
BmSOD | 932G | 1.04±0.04C | 0.76±0.09D* | 0.55±0.06E* | 1.00±0.09C* | 1.79±0.32B* | 5.54±0.48A* | 5.24±0.51A* |
HY | 0.91±0.10c | 0.24±0.02d | 0.15±0.03e | 0.14±0.02e | 1.06±0.10c | 2.59±0.36b | 3.63±0.41a | |
BmCAT | 932G | 0.93±0.05B | 0.82±0.09B | 0.24±0.09C* | 0.25±0.04C* | 0.32±0.04C* | 0.35±0.03C* | 1.10±0.09A |
HY | 0.95±0.11b | 0.87±0.02b | 0.47±0.15c | 0.37±0.05c | 0.84±0.08b | 1.13±0.12a | 1.35±0.12a | |
BmGST 1 | 932G | 0.97±0.05D | 0.76±0.09E | 0.55±0.09F* | 0.40±0.04G* | 5.61±0.38C* | 9.19±0.82B* | 11.82±0.88A* |
HY | 1.31±0.11f | 1.22±0.02f | 1.89±0.15e | 2.71±0.28d | 22.20±3.05c | 35.19±2.28a | 28.17±1.96b | |
BmGST 2 | 932G | 0.93±0.03D | 1.60±0.12C | 2.80±0.23B* | 7.29±0.50A* | 6.84±0.59A | 4.16±0.43B* | 3.45±0.48B* |
HY | 1.04±0.28e | 1.36±0.15de | 1.54±0.16d | 1.82±0.11c | 6.96±0.10b | 11.05±0.82a | 7.33±0.49b | |
BmGST 4 | 932G | 0.86±0.12F | 1.35±0.11E* | 2.56±0.28D* | 4.09±0.38C* | 5.26±0.45B* | 7.83±0.63A* | 7.65±0.32A* |
HY | 1.16±0.21bc | 0.98±0.07c | 1.28±0.13b | 1.32±0.15b | 1.52±0.14ab | 1.83±0.24a | 1.34±0.10b | |
BmGST 5 | 932G | 1.17±0.09G | 7.64±0.11F* | 24.08±0.90E* | 82.23±1.62C* | 105.73±2.82A* | 99.00±1.37B* | 76.20±1.08D* |
HY | 1.09±0.05g | 2.30±0.13f | 3.84±0.24e | 8.67±0.38d | 31.45±0.46c | 67.67±0.95b | 70.16±1.04a | |
BmGST 6 | 932G | 1.01±0.05EF* | 1.05±0.04E* | 0.94±0.05F* | 3.47±0.06D* | 6.82±0.09B* | 7.29±0.11A* | 4.11±0.05C* |
HY | 1.17±0.04d | 0.82±0.06e | 0.57±0.04g | 0.68±0.03f | 1.92±0.06b | 2.41±0.08a | 1.60±0.10c | |
BmGST 7 | 932G | 1.07±0.05G* | 4.24±0.06F* | 23.90±0.91E* | 96.56±1.42D* | 278.08±8.63C* | 497.83±12.59A* | 401.51±10.27B* |
HY | 0.86±0.05g | 6.04±0.12f | 27.31±1.01e | 75.33±1.58d | 102.96±3.65c | 156.52±5.02a | 138.28±8.48b | |
BmGST 8 | 932G | 0.93±0.02D* | 0.73±0.12E | 1.25±0.28F* | 1.41±0.29G* | 31.04±0.87C* | 68.38±1.54A* | 57.56±1.98B* |
HY | 0.99±0.02d | 0.75±0.03f | 0.86±0.02e | 0.88±0.04e | 14.46±0.66c | 34.22±1.05a | 28.29±0.83b | |
BmGST 9 | 932G | 1.06±0.05F | 1.16±0.06F* | 2.22±0.03D* | 1.53±0.02E* | 44.26±0.95C* | 137.00±4.83A* | 116.53±3.60B* |
HY | 0.97±0.04d | 0.83±0.02e | 0.78±0.05e | 0.56±0.03f | 26.62±0.73c | 37.36±0.77a | 32.37±1.28b | |
BmGST 10 | 932G | 1.03±0.06G | 2.35±0.27F* | 5.48±0.32E* | 11.62±0.36D* | 30.27±0.80C* | 39.54±1.02A* | 34.82±0.54B* |
HY | 1.01±0.03d | 0.88±0.01e | 0.32±0.02f | 0.16±0.01g | 12.78±0.45c | 48.92±1.03a | 25.26±0.86b | |
BmGST 11 | 932G | 1.02±0.02D* | 0.72±0.01E | 0.36±0.02F* | 0.12±0.01G* | 47.83±0.94C* | 169.53±4.37A* | 132.69±3.82B* |
HY | 1.03±0.02e | 0.72±0.02f | 0.66±0.01g | 1.31±0.04d | 17.74±0.65c | 61.25±2.72a | 47.08±1.59b | |
BmGST 12 | 932G | 0.92±0.03F* | 0.86±0.01F* | 1.44±0.04E* | 2.29±0.13D* | 5.84±0.20A* | 5.01±0.14B* | 3.47±0.09C* |
HY | 1.02±0.04g | 1.37±0.05f | 3.45±0.04c | 6.35±0.15a | 4.33±0.11b | 1.68±0.03e | 2.28±0.05d | |
BmGST 13 | 932G | 0.93±0.02G | 1.88±0.06F | 2.50±0.08E* | 7.37±0.18D* | 562.35±10.33C* | 3583.07±42.80A* | 1022.04±35.27B* |
HY | 0.98±0.03g | 1.64±0.02f | 2.27±0.09e | 5.89±0.16d | 103.36±1.08c | 247.71±4.64a | 198.18±5.29b | |
BmGST d1 | 932G | 0.97±0.05F | 1.36±0.06D* | 1.15±0.08E* | 0.83±0.02G* | 4.94±0.10C* | 25.36±0.62B* | 28.27±0.58A* |
HY | 1.03±0.03g | 0.89±0.02f | 2.33±0.05e | 4.46±0.08d | 9.52±0.17c | 33.41±0.88a | 22.73±0.92b | |
BmGST d2 | 932G | 1.02±0.01F | 1.11±0.05E* | 0.92±0.03G* | 2.48±0.07D* | 6.44±0.13C* | 29.77±0.46A* | 26.02±0.59B* |
HY | 1.02±0.02c | 0.78±0.01d | 0.21±0.01f | 0.03±0.00g | 0.57±0.01e | 1.40±0.03b | 1.86±0.05a | |
BmGST d3 | 932G | 0.98±0.02D | 1.03±0.01C | 0.91±0.02E* | 0.55±0.02F* | 1.03±0.04CD* | 2.05±0.05B* | 2.28±0.04A |
HY | 0.98±0.01d | 0.52±0.02e | 0.13±0.01g | 0.26±0.02f | 1.67±0.03c | 3.39±0.24a | 2.08±0.16b |
基因 | 品种 | 高温胁迫时间/h | ||||||
---|---|---|---|---|---|---|---|---|
1 | 6 | 12 | 18 | 24 | 36 | 48 | ||
BmSOD | 932G | 1.04±0.04C | 0.76±0.09D* | 0.55±0.06E* | 1.00±0.09C* | 1.79±0.32B* | 5.54±0.48A* | 5.24±0.51A* |
HY | 0.91±0.10c | 0.24±0.02d | 0.15±0.03e | 0.14±0.02e | 1.06±0.10c | 2.59±0.36b | 3.63±0.41a | |
BmCAT | 932G | 0.93±0.05B | 0.82±0.09B | 0.24±0.09C* | 0.25±0.04C* | 0.32±0.04C* | 0.35±0.03C* | 1.10±0.09A |
HY | 0.95±0.11b | 0.87±0.02b | 0.47±0.15c | 0.37±0.05c | 0.84±0.08b | 1.13±0.12a | 1.35±0.12a | |
BmGST 1 | 932G | 0.97±0.05D | 0.76±0.09E | 0.55±0.09F* | 0.40±0.04G* | 5.61±0.38C* | 9.19±0.82B* | 11.82±0.88A* |
HY | 1.31±0.11f | 1.22±0.02f | 1.89±0.15e | 2.71±0.28d | 22.20±3.05c | 35.19±2.28a | 28.17±1.96b | |
BmGST 2 | 932G | 0.93±0.03D | 1.60±0.12C | 2.80±0.23B* | 7.29±0.50A* | 6.84±0.59A | 4.16±0.43B* | 3.45±0.48B* |
HY | 1.04±0.28e | 1.36±0.15de | 1.54±0.16d | 1.82±0.11c | 6.96±0.10b | 11.05±0.82a | 7.33±0.49b | |
BmGST 4 | 932G | 0.86±0.12F | 1.35±0.11E* | 2.56±0.28D* | 4.09±0.38C* | 5.26±0.45B* | 7.83±0.63A* | 7.65±0.32A* |
HY | 1.16±0.21bc | 0.98±0.07c | 1.28±0.13b | 1.32±0.15b | 1.52±0.14ab | 1.83±0.24a | 1.34±0.10b | |
BmGST 5 | 932G | 1.17±0.09G | 7.64±0.11F* | 24.08±0.90E* | 82.23±1.62C* | 105.73±2.82A* | 99.00±1.37B* | 76.20±1.08D* |
HY | 1.09±0.05g | 2.30±0.13f | 3.84±0.24e | 8.67±0.38d | 31.45±0.46c | 67.67±0.95b | 70.16±1.04a | |
BmGST 6 | 932G | 1.01±0.05EF* | 1.05±0.04E* | 0.94±0.05F* | 3.47±0.06D* | 6.82±0.09B* | 7.29±0.11A* | 4.11±0.05C* |
HY | 1.17±0.04d | 0.82±0.06e | 0.57±0.04g | 0.68±0.03f | 1.92±0.06b | 2.41±0.08a | 1.60±0.10c | |
BmGST 7 | 932G | 1.07±0.05G* | 4.24±0.06F* | 23.90±0.91E* | 96.56±1.42D* | 278.08±8.63C* | 497.83±12.59A* | 401.51±10.27B* |
HY | 0.86±0.05g | 6.04±0.12f | 27.31±1.01e | 75.33±1.58d | 102.96±3.65c | 156.52±5.02a | 138.28±8.48b | |
BmGST 8 | 932G | 0.93±0.02D* | 0.73±0.12E | 1.25±0.28F* | 1.41±0.29G* | 31.04±0.87C* | 68.38±1.54A* | 57.56±1.98B* |
HY | 0.99±0.02d | 0.75±0.03f | 0.86±0.02e | 0.88±0.04e | 14.46±0.66c | 34.22±1.05a | 28.29±0.83b | |
BmGST 9 | 932G | 1.06±0.05F | 1.16±0.06F* | 2.22±0.03D* | 1.53±0.02E* | 44.26±0.95C* | 137.00±4.83A* | 116.53±3.60B* |
HY | 0.97±0.04d | 0.83±0.02e | 0.78±0.05e | 0.56±0.03f | 26.62±0.73c | 37.36±0.77a | 32.37±1.28b | |
BmGST 10 | 932G | 1.03±0.06G | 2.35±0.27F* | 5.48±0.32E* | 11.62±0.36D* | 30.27±0.80C* | 39.54±1.02A* | 34.82±0.54B* |
HY | 1.01±0.03d | 0.88±0.01e | 0.32±0.02f | 0.16±0.01g | 12.78±0.45c | 48.92±1.03a | 25.26±0.86b | |
BmGST 11 | 932G | 1.02±0.02D* | 0.72±0.01E | 0.36±0.02F* | 0.12±0.01G* | 47.83±0.94C* | 169.53±4.37A* | 132.69±3.82B* |
HY | 1.03±0.02e | 0.72±0.02f | 0.66±0.01g | 1.31±0.04d | 17.74±0.65c | 61.25±2.72a | 47.08±1.59b | |
BmGST 12 | 932G | 0.92±0.03F* | 0.86±0.01F* | 1.44±0.04E* | 2.29±0.13D* | 5.84±0.20A* | 5.01±0.14B* | 3.47±0.09C* |
HY | 1.02±0.04g | 1.37±0.05f | 3.45±0.04c | 6.35±0.15a | 4.33±0.11b | 1.68±0.03e | 2.28±0.05d | |
BmGST 13 | 932G | 0.93±0.02G | 1.88±0.06F | 2.50±0.08E* | 7.37±0.18D* | 562.35±10.33C* | 3583.07±42.80A* | 1022.04±35.27B* |
HY | 0.98±0.03g | 1.64±0.02f | 2.27±0.09e | 5.89±0.16d | 103.36±1.08c | 247.71±4.64a | 198.18±5.29b | |
BmGST d1 | 932G | 0.97±0.05F | 1.36±0.06D* | 1.15±0.08E* | 0.83±0.02G* | 4.94±0.10C* | 25.36±0.62B* | 28.27±0.58A* |
HY | 1.03±0.03g | 0.89±0.02f | 2.33±0.05e | 4.46±0.08d | 9.52±0.17c | 33.41±0.88a | 22.73±0.92b | |
BmGST d2 | 932G | 1.02±0.01F | 1.11±0.05E* | 0.92±0.03G* | 2.48±0.07D* | 6.44±0.13C* | 29.77±0.46A* | 26.02±0.59B* |
HY | 1.02±0.02c | 0.78±0.01d | 0.21±0.01f | 0.03±0.00g | 0.57±0.01e | 1.40±0.03b | 1.86±0.05a | |
BmGST d3 | 932G | 0.98±0.02D | 1.03±0.01C | 0.91±0.02E* | 0.55±0.02F* | 1.03±0.04CD* | 2.05±0.05B* | 2.28±0.04A |
HY | 0.98±0.01d | 0.52±0.02e | 0.13±0.01g | 0.26±0.02f | 1.67±0.03c | 3.39±0.24a | 2.08±0.16b |
[1] |
FELTON G W, SUMMERS C B. Antioxidant systems in insect[J]. Archives of insect biochemistry and physiology, 1995, 29(2):187-197.
doi: 10.1002/arch.940290208 URL |
[2] |
JENA K, KAR P K, KAUSAR Z, et al. Effects of temperature on modulation of oxidative stress and antioxidant defenses in testes of tropical tasar silkworm Antheraea mylitta[J]. J therm biol, 2013, 38(4):199-204
doi: 10.1016/j.jtherbio.2013.02.008 URL |
[3] | 冯丽春, 沈卫德. 蚕体解剖生理学[M]. 北京: 高等教育出版社, 2015. |
[4] |
XIAO W F, CHEN P, XIAO J S, et al. Comparative transcriptome profiling of a thermal resistant vs. sensitive silkworm strain in response high temperature[J]. Plos one, 2017, 12(5):e0177641.
doi: 10.1371/journal.pone.0177641 URL |
[5] | 李庆荣, 肖阳, 郑茜, 等. 不同家蚕品种血淋巴总SOD活力的差异及与生命力和产茧量性状的相关性[J]. 蚕业科学, 2012, 38(5):832-838. |
[6] | 袁燕萍, 赵林川, 魏广卫, 等. 家蚕品种7532和大造在高温冲击下中肠抗氧化酶活性的变化[J]. 蚕业科学, 2010, 36(4):692-696. |
[7] | LI J X, LU Z T, MAO T T, et al. Identification of the nucleotide exchange factor BmGrpE and its role under high-temperature stress in silkworm, Bombyx mori[J]. Arch insect biochem physiol, 2020, 104(1):e21664. |
[8] |
JIANG L, HUANG C L, WANG B B, et al. Enhanced heat tolerance in transgenic silkworm via overexpression of Pyrococcus furiosus superoxide reductase[J]. Insect biochemistry and molecular biology, 2018, 92:40-44.
doi: S0965-1748(17)30196-0 pmid: 29170068 |
[9] |
WANG Y M, XIE E Y, GUO H Z, et al. Overexpression of Bmhsp19.9 protects BmE cells and transgenic silkworm against extreme temperatures[J]. International journal of biological macromolecules, 2020, 150:1141-1146.
doi: S0141-8130(19)35815-5 pmid: 31739025 |
[10] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262 URL |
[11] | SUZUKI N, KOUSSEVITZKY S, MITTLER R, et al. ROS and redox signalling in the response of plants to abiotic stress[J]. Plant, cell & environ. 2012, 35, 259e270. |
[12] | GENG X M, LIU X, JI M, et al. Enhancing heat tolerance of the little dogwood Cornus canadensis l. f. with introduction of a superoxide reductase gene from the hyperthermophilic archaeon Pyrococcus furiosus[J]. Front. plant sci. 2016, 7, 26. |
[13] | APEL K, HIRT H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annu. Rev. plant Biol. 2004, 55, 373e399. |
[14] | IM Y J, JI M, LEE A, et al. Expression of pyrococcus furiosus superoxide reductase in Arabidopsis enhances heat tolerance[J]. Plant physiol, 2009, 151:893e904.. |
[15] | KAI H, HIRASHIMA K, MATSUDA O, et al. Thermotolerant cyclamen with reduced acrolein and methyl vinyl ketone[J]. J. exp. bot, 2012, 63, 4143e4150 |
[16] |
CHOI Y S, LEE K S, YOON H J, et al. Bombus ignitus Cu,Zn superoxide dismutase (SOD1): cDNA cloning, gene structure, and up-regulation in response to paraquat, temperature stress, or lipopolysaccharide stimulation[J]. Comparative biochemistry and physiology. part b, 2006, 144(3):365-371.
doi: 10.1016/j.cbpb.2006.03.014 URL |
[17] | 黄晓峰, 林夏丹, 朱倩婷, 等. 四种不同来源的超氧化物歧化酶(SOD)对黑腹果蝇寿命、繁殖力和抗逆能力的影响[J]. 昆虫学报, 2013, 56(7):765-771. |
[18] |
ENAYATI A A, RANSON H, HEMINGWAY J. Insect glutathione transferases and insecticide resistance[J]. Insect molecular biology, 2005, 14(1):3-8.
pmid: 15663770 |
[19] | SHEEHAN D, MEADE Q, FOLEY V, et al. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian menbers of an ancient enzyme superfamily[J]. Biochem.j, 2001, 360:1-16. |
[20] | DUBOVSKIY I M, MARTEMYANOV V V, VORONTSOVA Y L, et al. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae)[J]. Comparative biochemistry and physiology. part c, 2008, 148(1):1-5. |
[21] | 肖龙云, 程嘉翎, 王俊, 等. 家蚕氟化物中毒后血淋巴中脂质过氧化物和抗氧化物含量及抗氧化酶活性的变化[J]. 蚕业科学, 2010, 36(6):1047-1051. |
[22] | 杨伟克, 唐芬芬, 刘增虎, 等. 高温和低温条件下琥珀蚕血淋巴SOD及CAT活性的变化[J]. 江苏农业科学, 2017, 45(1):153-155. |
[23] | 贾姝, 赫英姿, 于庭洪, 等. 寄生线虫对柞蚕幼虫保护酶活性和免疫相关基因表达的影响[J]. 蚕业科学, 2020, 46(3):336-342. |
[24] | 唐芬芬, 杨伟克, 朱峰, 等. BmNPV对家蚕抗氧化酶基因表达及其酶活性的影响[J]. 南方农业学报, 2019, 50(10):2308-2313. |
[25] | 唐芬芬, 杨伟克, 朱峰, 等. 家蚕核型多角体病毒对家蚕酚氧化酶活性及其基因表达的影响[J]. 中国农学通报, 2016, 32(32):25-28. |
[26] |
MIAO Z Q, TU Y Q, GUO P Y, et al. Antioxidant enzymes and heat shock protein genes from Liposcelis bostrychophila are involved in stress defense upon heat shock[J]. Insects, 2020, 11:839.
doi: 10.3390/insects11120839 URL |
[27] |
King A M, MacRae T H. Insect heat shock proteins during stress and diapause[J]. Annu. rev. entomol. 2015, 60:59-75.
doi: 10.1146/annurev-ento-011613-162107 pmid: 25341107 |
[28] | 崔娟. 筛豆龟蝽对温度变化的响应及其生理生化机制[D]. 长春: 吉林农业大学, 2019:68-98. |
[29] | 夏爱华, 李娜, 贾漫丽, 等. 高温胁迫对家蚕血液蛋白质组的影响[J]. 浙江农业学报, 2015, 27(7):1160-1167. |
[30] | 王晓迪, 冀顺霞, 申晓娜, 等. 温度胁迫下昆虫表观遗传机制的研究进展[J]. 中国生物防治学报, 2020, 37(3):598-608 |
[31] |
CHEN P, XIAO W F, PAN M H, et al. Comparative genome-wide DNA methylation analysis reveals epigenomic differences in response to heat-humidity stress in Bombyx mori[J]. International journal of biological macromolecules, 2020, 164:3771-3779.
doi: 10.1016/j.ijbiomac.2020.08.251 pmid: 32891645 |
[1] | 肖阳, 李庆荣, 邢东旭, 杨琼. 高温胁迫对化学感受蛋白在家蚕中肠与脂肪体中基因表达的影响[J]. 中国农学通报, 2022, 38(6): 107-115. |
[2] | 银珊珊, 周国彦, 顾博文, 武春成, 闫立英, 谢洋. 褪黑素引发对干旱胁迫下黄瓜幼苗生理特性的影响[J]. 中国农学通报, 2022, 38(19): 30-36. |
[3] | 姚琼, 全林发, 徐淑, 董易之, 李文景, 池艳艳, 陈炳旭. 粗胫翠尺蛾视蛋白基因的克隆及灯光对其表达量的影响[J]. 中国农学通报, 2022, 38(16): 103-109. |
[4] | 方学良, 付铭, 陈正, 白云秀, 何莹, 曾汉来. 5-氮杂胞苷调节植物基因表达研究进展与应用展望[J]. 中国农学通报, 2022, 38(13): 30-35. |
[5] | 金龙飞, 尹欣幸, 冯美利, 周丽霞, 曹红星. 油棕硼转运通道蛋白基因NIP5的克隆及其在缺硼下的表达分析[J]. 中国农学通报, 2021, 37(9): 22-27. |
[6] | 马洁, 王翰霖, 侯晓宁, 金瑞, 杨涓, 党文瑞, 王明国, 郑国琦. 外源硒对水稻抗氧化酶活性、产量及其体内硒含量影响的研究[J]. 中国农学通报, 2021, 37(6): 9-15. |
[7] | 宋磊, 次仁央金, 王小强, 何燕. 小麦对高温胁迫的响应机制研究进展[J]. 中国农学通报, 2021, 37(36): 6-12. |
[8] | 娄慧, 赵曾强, 朱金成, 张薇. 褪黑素对低温胁迫下棉花种子萌发特性的影响[J]. 中国农学通报, 2021, 37(35): 13-19. |
[9] | 关思静, 高静, 徐蓉蓉, 葛甜甜, 王楠, 颜永刚, 张岗, 陈莹, 刘阿萍, 程萌格. 甘草生长素反应因子(ARF)基因家族的鉴定及表达分析[J]. 中国农学通报, 2021, 37(29): 20-27. |
[10] | 李荣田, 于晓晨, 孔梦莹, 刘长华. 转基因抗虫水稻‘HD2’不同生长发育阶段cry2A*基因表达量[J]. 中国农学通报, 2021, 37(23): 15-22. |
[11] | 李冠嵘, 何好, 朱国庆, 陈诗雅, 徐阳, 金淑梅. RNA-seq揭示碱性盐(NaHCO3)对细叶百合鳞茎基因表达的影响[J]. 中国农学通报, 2021, 37(12): 64-71. |
[12] | 吴婧婧, 周晓玲, 董桂清, 陆春霞, 梁贵秋, 陈枝, 陆飞, 毛洪斌, 石韡韬. 3种不同广西家蚕品种幼虫培养蚕虫草的对比分析[J]. 中国农学通报, 2020, 36(8): 105-110. |
[13] | 时丕彪, 王军, 费月跃, 洪立洲, 王伟义, 吕远大, 顾闽峰. 盐胁迫对不同藜麦品种幼苗生长及CqNHX1基因表达的影响[J]. 中国农学通报, 2020, 36(33): 19-24. |
[14] | 陈丽, 谷会, 贾志伟, 洪克前. 菠萝Dof转录因子在己醛延缓果实黑心病发生中表达分析[J]. 中国农学通报, 2020, 36(15): 115-122. |
[15] | 杨伟克,唐芬芬,刘增虎,钟健,董占鹏. 喂食细菌对家蚕血淋巴酚氧化酶活性及其基因表达的影响[J]. 中国农学通报, 2019, 35(5): 160-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||