中国农学通报 ›› 2020, Vol. 36 ›› Issue (33): 19-24.doi: 10.11924/j.issn.1000-6850.casb20191200914
时丕彪1(), 王军1, 费月跃1, 洪立洲1, 王伟义1, 吕远大2, 顾闽峰1(
)
收稿日期:
2019-12-05
修回日期:
2020-01-10
出版日期:
2020-11-25
发布日期:
2020-11-18
通讯作者:
顾闽峰
作者简介:
时丕彪,男,1989年出生,山东菏泽人,助理研究员,硕士,主要从事农作物新品种选育及分子育种研究。通信地址:224049 江苏省盐城市亭湖区黄尖镇南首新洋农业试验站,Tel:0515-82600928,E-mail: 基金资助:
Shi Pibiao1(), Wang Jun1, Fei Yueyue1, Hong Lizhou1, Wang Weiyi1, Lv Yuanda2, Gu Minfeng1(
)
Received:
2019-12-05
Revised:
2020-01-10
Online:
2020-11-25
Published:
2020-11-18
Contact:
Gu Minfeng
摘要:
为了筛选出耐盐性较强的藜麦品种并为苗期耐盐性鉴定提供参考,以3个不同的藜麦品种为试验材料,在盐胁迫下用测量法测定其相关生长指标,紫外分光光度计法测定叶绿素含量,电导法测定相对离子渗透率,并利用实时荧光定量PCR法比较了耐盐基因CqNHX1的相对表达量。结果表明,NaCl胁迫下SQ1株高降幅较小,生物量有所增加,相对离子渗透率几乎不变,且CqNHX1a和CqNHX1b表达量均极显著升高,说明SQ1在高盐环境下能正常生长;SQ34的株高和叶绿素含量均显著降低,生物量保持不变,而CqNHX1a和CqNHX1b表达量均显著升高;QQ61的根冠比和叶绿素含量极显著下降,相对离子渗透率极显著升高,CqNHX1a和CqNHX1b呈下调表达,说明该品种耐盐性较弱。藜麦品种间耐盐性存在显著差异,耐盐性强弱为:SQ1 > SQ34 > QQ61,SQ1作为高耐盐品种,可在盐碱地进一步推广种植。
中图分类号:
时丕彪, 王军, 费月跃, 洪立洲, 王伟义, 吕远大, 顾闽峰. 盐胁迫对不同藜麦品种幼苗生长及CqNHX1基因表达的影响[J]. 中国农学通报, 2020, 36(33): 19-24.
Shi Pibiao, Wang Jun, Fei Yueyue, Hong Lizhou, Wang Weiyi, Lv Yuanda, Gu Minfeng. Effects on Seedling Growth and CqNHX1 Gene Expression of Different Quinoa Varieties: Salt Stress[J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 19-24.
基因 | 正向引物 (5'→3') | 反向引物 (5'→3') |
---|---|---|
CqEF1a | GTACGCATGGGTGCTTGACAAACTC | ATCAGCCTGGGAGGTACCAGTAAT |
CqNHX1a | GCTTATGATGCTTATGGCTTA | GCTTGGAGGTTATTCTTGAG |
CqNHX1b | ATGCTTATGGCTTATCTATCTTAC | TGCTTGGTGGTTACTCTT |
基因 | 正向引物 (5'→3') | 反向引物 (5'→3') |
---|---|---|
CqEF1a | GTACGCATGGGTGCTTGACAAACTC | ATCAGCCTGGGAGGTACCAGTAAT |
CqNHX1a | GCTTATGATGCTTATGGCTTA | GCTTGGAGGTTATTCTTGAG |
CqNHX1b | ATGCTTATGGCTTATCTATCTTAC | TGCTTGGTGGTTACTCTT |
NaCl浓度/ (mmol/L) | 株高/cm | 根长/cm | 生物量/g | 根冠比 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SQ1 | SQ34 | QQ61 | SQ1 | SQ34 | QQ61 | SQ1 | SQ34 | QQ61 | SQ1 | SQ34 | QQ61 | |
0 | 23.2 | 22.7 | 23 | 21.7 | 22.9 | 20.3 | 0.352 | 0.369 | 0.372 | 12.126 | 10.842 | 14.006 |
300 | 21.3 | 19.4* | 19.7* | 18.4 | 16.9 | 19.7 | 0.374 | 0.368 | 0.335 | 9.632* | 8.559* | 8.367** |
NaCl浓度/ (mmol/L) | 株高/cm | 根长/cm | 生物量/g | 根冠比 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SQ1 | SQ34 | QQ61 | SQ1 | SQ34 | QQ61 | SQ1 | SQ34 | QQ61 | SQ1 | SQ34 | QQ61 | |
0 | 23.2 | 22.7 | 23 | 21.7 | 22.9 | 20.3 | 0.352 | 0.369 | 0.372 | 12.126 | 10.842 | 14.006 |
300 | 21.3 | 19.4* | 19.7* | 18.4 | 16.9 | 19.7 | 0.374 | 0.368 | 0.335 | 9.632* | 8.559* | 8.367** |
[1] |
Maughan P J, Bonifacio A, Jellen E N, et al. A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers[J]. Theoretical and Applied Genetics, 2004,109(6):1188-1195.
URL pmid: 15309300 |
[2] |
Zurita-Silva A, Fuentes F, Zamora P, et al. Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives[J]. Molecular Breeding, 2014,34(1):13-30.
doi: 10.1007/s11032-014-0023-5 URL |
[3] |
Jacobsen S E. The worldwide potential for quinoa (Chenopodium quinoa Willd.)[J]. Food Reviews International, 2003,19(1-2):167-177.
doi: 10.1081/FRI-120018883 URL |
[4] |
Vega-galvez A, Miranda M, Vergara J, et al. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review[J]. Journal of the Science of Food and Agriculture, 2010,90:2541-2547.
doi: 10.1002/jsfa.4158 URL pmid: 20814881 |
[5] |
Repo-Carrasco R, Espinoza C, Jacobsen S E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule)[J]. Food Reviews International, 2003,19(1-2):179-189.
doi: 10.1081/FRI-120018884 URL |
[6] |
Ng S C, Anderson A, Coker J, et al. Characterization of lipid oxidation products in quinoa (Chenopodium quinoa)[J]. Food Chemistry, 2007,101:185-192.
doi: 10.1016/j.foodchem.2006.01.016 URL |
[7] | Abugoch L E. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional and functional properties[J]. Advances in Food and Nutrition Research, 2009,58(9):1-31. |
[8] |
Wu G Y, Peterson A J, Morris C F, et al. Quinoa seed quality response to sodium chloride and sodium sulfate salinity[J]. Frontiers in Plant Science, 2016,7:790.
URL pmid: 27375648 |
[9] |
Nowak V, Du J, Charrondiere U R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.)[J]. Food Chemistry, 2016,193:47-54.
URL pmid: 26433286 |
[10] |
Risi J C, Galwey N W. The pattern of genetic diversity in the Andean grain crop quinoa (Chenopodium quinoa Willd.). I. Associations between characteristics[J]. Euphytica, 1989,41(1-2):147-162.
doi: 10.1007/BF00022424 URL |
[11] |
Fuentes F, Bhargavaa. Morphological analysis of quinoa germplasm grown under lowland desert conditions[J]. Journal of Agronomy and Crop Science, 2011,197(2):124-134.
doi: 10.1111/j.1439-037X.2010.00445.x URL |
[12] |
Gonzalez J A, Bruno M, Valoy M. Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought[J]. Journal of Agronomy and Crop Science, 2011,197(2):81-93.
doi: 10.1111/j.1439-037X.2010.00446.x URL |
[13] |
Martinez E A, Veas E, Jorquera C. Re-introduction of quinoa into arid Chile: cultivation of two lowland races under extremely low irrigation[J]. Journal of Agronomy and Crop Science, 2009,195(1):1-10.
doi: 10.1111/jac.2009.195.issue-1 URL |
[14] | Vacher J J. Responses of two main Andean crops, quinoa (Chenopodium quinoa Willd) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivian Altiplano: significance of local adaptation[J]. Agriculture,Ecosystems & Environment, 1998,68:99-108. |
[15] |
Haradi Y, Marandon K, Tian Y, et al. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels[J]. Journal of Experimental Botany, 2011,62(1):185-193.
doi: 10.1093/jxb/erq257 URL pmid: 20732880 |
[16] |
Jacobsen S E, Monteros C, Christiansen J L, et al. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages[J]. European Journal of Agronomy, 2005,22(2):131-139.
doi: 10.1016/j.eja.2004.01.003 URL |
[17] |
Liu Z X, Zou L S, Chen C H, et al. iTRAQ-based quantitative proteomic analysis of salt stress in Spica Prunellae[J]. Scientific Reports, 2019,9:9590.
doi: 10.1038/s41598-019-46043-9 URL pmid: 31270436 |
[18] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008,59:651-681.
URL pmid: 18444910 |
[19] |
Deinlein U, Stephan A B, Horie T, et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science, 2014,19(6):371-379.
doi: 10.1016/j.tplants.2014.02.001 URL pmid: 24630845 |
[20] |
Li S, Wang N, Ji D D, et al. A GmSIN1/GmNCED3s/GmRbohBs feed-forward loop acts as a signal amplifier that regulates root growth in soybean exposed to salt stress[J]. Plant Cell, 2019,31:2107-2130.
doi: 10.1105/tpc.18.00662 URL pmid: 31227558 |
[21] |
Liang W J, Ma X L, Wan P, et al. Plant salt-tolerance mechanism: A review[J]. Biochemical and Biophysical Research Communications, 2018,495:286-291.
doi: 10.1016/j.bbrc.2017.11.043 URL pmid: 29128358 |
[22] |
Abdel-Mageed T A, Semida W M, Taha R S, et al. Efect of summer-fall defcit irrigation on morpho-physiological, anatomical responses, fruit yield and water use efciency of cucumber under salt afected soil[J]. Scientia Horticulturae, 2018,237:148-155.
doi: 10.1016/j.scienta.2018.04.014 URL |
[23] |
Rozema J, Cornelisse D, Zhang Y C, et al. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes[J]. AoB Plants, 2015,7:plu083.
doi: 10.1093/aobpla/plu083 URL pmid: 25492122 |
[24] |
Jarvis D E, Ho Y S, Lightfoot D J, et al. The genome of Chenopodium quinoa[J]. Nature, 2017,542:307-312.
doi: 10.1038/nature21370 URL pmid: 28178233 |
[25] |
Chen X Y, Bao H X, Guo J, et al. Na+/H+ exchanger 1 participates in tobacco disease defence against Phytophthora parasitica var. nicotianae by affecting vacuolar pH and priming the antioxidative system[J]. Journal of Experimental Botany, 2014,65(20):6107-6122.
URL pmid: 25170102 |
[26] |
Ruiz K B, Aloisi I, Delduca S, et al. Salares versus coastal ecotypes of quinoa: salinity responses in Chilean landraces from contrasting habitats[J]. Plant Physiology and Biochemistry, 2016,101:1-13.
doi: 10.1016/j.plaphy.2016.01.010 URL pmid: 26841266 |
[27] |
Ruiz-Carrasco K, Antognoni F, Coulibaly A K, et al. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression[J]. Plant Physiology and Biochemistry, 2011,49:1333-1341.
URL pmid: 22000057 |
[28] | Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic Biomembranes[J]. Methods in Enzymology, 1987,148:350-382. |
[29] |
Sakuraba Y, Jeong J, Kang M-Y, et al. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis[J]. Nature Communications, 2014,5:4636.
doi: 10.1038/ncomms5636 URL pmid: 25119965 |
[30] |
Zhang L, Ma H J, Chen T T, et al. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity[J]. PLoS One, 2014,9(11):e112807.
doi: 10.1371/journal.pone.0112807 URL pmid: 25391141 |
[31] |
Meng H B, Jiang S S, Hua S J, et al. Comparison between a tetraploid turnip and its diploid progenitor (Brassica rapa L.): the adaptation to salinity stress[J]. Agricultural Sciences in China, 2011,10(3):363-375.
doi: 10.1016/S1671-2927(11)60015-1 URL |
[32] |
Zheng G S, Fan C Y, Di S K, et al. Over-expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa (Medicago sativa L.)[J]. Frontiers in Plant Science, 2017,8:2125.
doi: 10.3389/fpls.2017.02125 URL pmid: 29326737 |
[33] |
Almansouri M, Kinet J M, Lutts S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.)[J]. Plant Soil, 2001,231(2):243-254.
doi: 10.1023/A:1010378409663 URL |
[34] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008,59(1):651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 URL |
[35] |
Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis[J]. Plant Physiology, 2000,124(3):941-948.
doi: 10.1104/pp.124.3.941 URL pmid: 11080272 |
[36] |
Tuteja N. Mechanisms of high salinity tolerance in plants[J]. Methods in Enzymology, 2007,428:419-438.
URL pmid: 17875432 |
[37] |
Abel G, Mackenzie A J. Salt tolerance of soybean varieties (Glycine max L. Merrill) during germination and later growth[J]. Crop Science, 1964,4(2):157-161.
doi: 10.2135/cropsci1964.0011183X000400020010x URL |
[38] |
Foolad M R. Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping[J]. Genome, 1999,42(4):727-734.
doi: 10.1139/g98-163 URL |
[39] |
Ungar I A. Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae)[J]. American Journal of Botany, 1996,83(5):604-607.
doi: 10.1002/j.1537-2197.1996.tb12745.x URL |
[40] |
Song J, Fan H, Zhao Y Y, et al. Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland[J]. Aquatic Botany, 2008,88(4):331-337.
doi: 10.1016/j.aquabot.2007.11.004 URL |
[41] |
Chen D J, Shi R L, Pape J-M, et al. Predicting plant biomass accumulation from image-derived parameters[J]. GigaScience, 2018,7(2):1-13.
doi: 10.1093/gigascience/gix117 URL pmid: 29186425 |
[42] |
Kafi M, Rahimi Z. Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.)[J]. Soil Science and Plant Nutrition, 2011,57(2):341-347.
doi: 10.1080/00380768.2011.567398 URL |
[43] |
Tanaka A, Tanaka R. Chlorophyll metabolism[J]. Current Opinion in Plant Biology, 2006,9(3):248-255.
doi: 10.1016/j.pbi.2006.03.011 URL pmid: 16603411 |
[44] |
Zhang Q, Alfarra M R, Worsnop D, et al. Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry[J]. Environment Science and Technology, 2005,39:4938-4952.
doi: 10.1021/es048568l URL |
[45] |
Sairam R, Srivastava G. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress[J]. Plant Science, 2002,162(6):897-904.
doi: 10.1016/S0168-9452(02)00037-7 URL |
[46] |
Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicology and Environmental Safety, 2005,60(3):324-349.
doi: 10.1016/j.ecoenv.2004.06.010 URL pmid: 15590011 |
[47] |
Taji T, Seki M, Satou M, et al. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray[J]. Plant Physiology, 2004,135(3):1697-1709.
URL pmid: 15247402 |
[48] |
Parker R, Flowers T J, Moore A L, et al. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina[J]. Journal of Experimental Botany, 2006,57(5):1109-1118.
URL pmid: 16513811 |
[49] |
Blumwald E, Poole R J. Na/H antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris[J]. Plant Physiology, 1985,78(1):163-167.
URL pmid: 16664191 |
[1] | 武迪, 张锋, 隋春莹, 师君慧, 万雪洁, 刘义国, 韩伟, 师长海. 外源活性物质对小麦苗期抗逆性的影响[J]. 中国农学通报, 2022, 38(9): 14-19. |
[2] | 刘青松, 贾艳丽, 肖宇, 郭志顶, 纪明妹, 赵忠祥, 黄素芳, 岳明强, 刘震, 阎旭东, 徐玉鹏. 盐胁迫对苜蓿生理性状和生长性状的影响[J]. 中国农学通报, 2022, 38(8): 96-101. |
[3] | 张宇阳, 周雪, 刘灵艺, 许吴俊, 任旭琴, 王广龙, 熊爱生. 大蒜几丁质酶基因AsCHI1的鉴定及其对盐胁迫的响应[J]. 中国农学通报, 2022, 38(5): 23-29. |
[4] | 伊嘉雯, 冯棣, 朱崴, 亓娜, 滕奉魁, 卢小引. 不同品种水稻发芽阶段耐盐性对比研究[J]. 中国农学通报, 2022, 38(33): 10-14. |
[5] | 王洋, 张瑞, 周雨晴, 刘永昊, 刘高生, 戴其根. 基于文献计量的国内水稻耐盐性研究态势分析[J]. 中国农学通报, 2022, 38(31): 147-153. |
[6] | 梅丽, 韩立红, 周继华, 周吉红, 祝宁, 王俊英, 曹彩红, 何秉青. 藜麦菜用品种筛选及刈割可行性初探[J]. 中国农学通报, 2022, 38(31): 31-37. |
[7] | 郭东森, 王琳, 魏启舜, 崔联明, 周影, 郭成宝. 羽毛生物降解液对盐胁迫下小白菜生长的生理调控作用[J]. 中国农学通报, 2022, 38(25): 25-29. |
[8] | 黄平升, 刘世男, 李婷, 覃永华. 外源硅对盐胁迫下黄果厚壳桂幼苗的光合荧光及抗氧化特性的影响[J]. 中国农学通报, 2022, 38(23): 32-38. |
[9] | 李嘉炜, 陈潇, 常静静, 宋钊, 何裕志, 张白鸽. 可溶性盐浓度影响南瓜幼苗生长和荧光响应特性[J]. 中国农学通报, 2022, 38(18): 70-78. |
[10] | 张利琴, 殷红燕, 穆淑媛, 付均惠, 李燕. 5个杂交桑种质的耐盐性评价[J]. 中国农学通报, 2022, 38(17): 62-68. |
[11] | 邢起铭, 金文杰, 周利斌, 李文建, 刘瑞媛, 马建忠. 植物根际促生菌提高植物耐盐性的研究进展[J]. 中国农学通报, 2022, 38(11): 46-52. |
[12] | 杨钊, 黄杰, 魏玉明, 刘文瑜, 金茜, 杨发荣. 机械化对甘肃省藜麦产业进程的影响[J]. 中国农学通报, 2022, 38(1): 142-144. |
[13] | 卢辛成, 蒋剑春, 何静, 孙康, 孙云娟. 木醋液对小麦幼苗生长、抗氧化特性及内源激素含量的影响[J]. 中国农学通报, 2021, 37(7): 7-13. |
[14] | 王明泉, 付立新, 李国良, 扈光辉, 任洪雷, 胡少新, 杨剑飞, 刘畅, 龚士琛. 玉米抗感种质资源苗期耐盐性的光合作用机制研究[J]. 中国农学通报, 2021, 37(5): 8-14. |
[15] | 时佳琦, 萨如拉, 令玉, 萨茹拉其其格, 范富, 张雪婷. 盐碱土秸秆添加量对玉米种子萌发及幼苗生长特性的影响[J]. 中国农学通报, 2021, 37(36): 13-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||