中国农学通报 ›› 2020, Vol. 36 ›› Issue (15): 115-122.doi: 10.11924/j.issn.1000-6850.casb20191100794
所属专题: 生物技术
收稿日期:
2019-11-07
修回日期:
2019-11-28
出版日期:
2020-05-25
发布日期:
2020-05-21
通讯作者:
洪克前
作者简介:
陈丽,女,1971年出生,广东湛江人,研究实习员,硕士,研究方向:食品科学。通信地址:524091 广东省湛江市麻章区湖秀路一号(湖光岩北) 南亚热带作物研究所,Tel:0759-2858198,E-mail:chenroumu@126.com。
基金资助:
Chen Li, Gu Hui, Jia Zhiwei, Hong Keqian()
Received:
2019-11-07
Revised:
2019-11-28
Online:
2020-05-25
Published:
2020-05-21
Contact:
Hong Keqian
摘要:
Dof蛋白是植物所特有的一类转录因子,在许多生物及非生物胁迫反应中扮演着重要的角色。本研究旨在探讨菠萝AcDof转录因子家族成员在果实诱导抗黑心病中的作用。以菠萝果实为试材,采用延缓菠萝黑心病发生的外源己醛处理果实,处理结束后放置在25℃下贮藏8天,通过荧光定量PCR(qRT-PCR)技术分析菠萝AcDofs转录因子在果实抗黑心病诱导中的基因表达变化。基于菠萝基因组数据库,筛选并克隆到25个Dof转录因子,被命名为AcDof1-AcDof25;0.1%(v/v)己醛处理显著延缓了菠萝果实黑心指数的上升;qRT-PCR分析表明,20个AcDof转录因子家族成员中,有18个AcDof转录因子被己醛处理所激活,其中AcDof4、AcDof8、AcDof14、AcDof16和AcDof18等5个转录因子在处理组和对照组果实中表达趋势有较大差异;AcDof13被己醛处理显著抑制。推测这6个AcDof转录因子以不同方式响应了己醛延缓菠萝果实黑心病发生过程,它们可能是黑心病发生的关联基因。
中图分类号:
陈丽, 谷会, 贾志伟, 洪克前. 菠萝Dof转录因子在己醛延缓果实黑心病发生中表达分析[J]. 中国农学通报, 2020, 36(15): 115-122.
Chen Li, Gu Hui, Jia Zhiwei, Hong Keqian. Dof Transcription Factor in Pineapple Fruits Treated with Hexaldehyde Delaying Internal Browning Resistance: Expression Analysis[J]. Chinese Agricultural Science Bulletin, 2020, 36(15): 115-122.
基因 | 正向引物(5′-3′) | 反向引物(5′-3′) |
---|---|---|
Acactin | CTGGCCTACGTGGCACTTGACTT | CACTTCTGGGCAGCGGAACCTTT |
AcDof1 | ACCATTGTACCCTGCACCTTAC | TTGATCCCATTTCCATCCCT |
AcDof2 | CAGAAGCAGAAGCAGAAGCAG | CAATGGGAAGCGATAATGGC |
AcDof3 | CTTGGCTTTCCCCTACCACA | GGGCACAAACGACCCTACTC |
AcDof4 | GCAAGAGAGGAAGGTGGTGAG | TGGAAGAGGAGTTGGATGAGG |
AcDof8 | AAGAATGAGAAGGTGATGGA | GGTCGGATTTAGGGCAA |
AcDof10 | CAACCTCTCCTTCCCACA | TCATTTCCATCACCTCCTC |
AcDof11 | TACGGCGAAAATGGAAGTGT | CCCCCAGAAGAAGGAAAGAAAT |
AcDof12 | CCGACAAAGAGCGAAGGGA | GCAGACCAAAGCAGGAGACC |
AcDof13 | CCGGGAGACGAAGTTCT | CGTTGTTGATGATGATGATG |
AcDof14 | ATCTCTGAGGAATGTCCCTGTTG | GGTGATGCTGAGGTTGGTGG |
AcDof15 | ACGCAACAAGCGGAGCA | TGTGGAGGAAGAGGAGGACG |
AcDof16 | CATCCACCATCCCTTTCCC | AACTCTTTGCCGCCTCATCT |
AcDof17 | ATGCCGCTCAAACTGC | CCTTCCCTCTCTCTCCTCT |
AcDof18 | AACCAGGGAGTAGCG | GTAGTTGTTGTAGTAGCAGA |
AcDof19 | ATAAGGAGGAATCAATGGAG | TTGGCGGGTAATAAGGTA |
AcDof20 | CTTGGGAAGGAGGCGTTTT | GAGGGTTTTTGCGGAGTTTT |
AcDof21 | TTGACCCCCTCATTCCACC | CTCTGTTTTTCGTTTTCCGCTT |
AcDof22 | TGGCTTCCCCAACCTCTACT | CCTCCTTCCAACATTGCTTTAT |
AcDof23 | TGCCGACACCACTGAAGACA | AAGACGACACGGAGGAGAAAG |
AcDof25 | CAAATCACAAGCAGCCTC | AACTATCAATCAACCACGC |
基因 | 正向引物(5′-3′) | 反向引物(5′-3′) |
---|---|---|
Acactin | CTGGCCTACGTGGCACTTGACTT | CACTTCTGGGCAGCGGAACCTTT |
AcDof1 | ACCATTGTACCCTGCACCTTAC | TTGATCCCATTTCCATCCCT |
AcDof2 | CAGAAGCAGAAGCAGAAGCAG | CAATGGGAAGCGATAATGGC |
AcDof3 | CTTGGCTTTCCCCTACCACA | GGGCACAAACGACCCTACTC |
AcDof4 | GCAAGAGAGGAAGGTGGTGAG | TGGAAGAGGAGTTGGATGAGG |
AcDof8 | AAGAATGAGAAGGTGATGGA | GGTCGGATTTAGGGCAA |
AcDof10 | CAACCTCTCCTTCCCACA | TCATTTCCATCACCTCCTC |
AcDof11 | TACGGCGAAAATGGAAGTGT | CCCCCAGAAGAAGGAAAGAAAT |
AcDof12 | CCGACAAAGAGCGAAGGGA | GCAGACCAAAGCAGGAGACC |
AcDof13 | CCGGGAGACGAAGTTCT | CGTTGTTGATGATGATGATG |
AcDof14 | ATCTCTGAGGAATGTCCCTGTTG | GGTGATGCTGAGGTTGGTGG |
AcDof15 | ACGCAACAAGCGGAGCA | TGTGGAGGAAGAGGAGGACG |
AcDof16 | CATCCACCATCCCTTTCCC | AACTCTTTGCCGCCTCATCT |
AcDof17 | ATGCCGCTCAAACTGC | CCTTCCCTCTCTCTCCTCT |
AcDof18 | AACCAGGGAGTAGCG | GTAGTTGTTGTAGTAGCAGA |
AcDof19 | ATAAGGAGGAATCAATGGAG | TTGGCGGGTAATAAGGTA |
AcDof20 | CTTGGGAAGGAGGCGTTTT | GAGGGTTTTTGCGGAGTTTT |
AcDof21 | TTGACCCCCTCATTCCACC | CTCTGTTTTTCGTTTTCCGCTT |
AcDof22 | TGGCTTCCCCAACCTCTACT | CCTCCTTCCAACATTGCTTTAT |
AcDof23 | TGCCGACACCACTGAAGACA | AAGACGACACGGAGGAGAAAG |
AcDof25 | CAAATCACAAGCAGCCTC | AACTATCAATCAACCACGC |
基因 | 氨基酸(AA) | 起始 | 终止 | E值 |
---|---|---|---|---|
AcDof1 | 428 | 114 | 172 | 2.5e-33 |
AcDof2 | 259 | 31 | 89 | 7.4e-33 |
AcDof3 | 408 | 52 | 110 | 2.8e-33 |
AcDof4 | 364 | 31 | 89 | 2.5e-33 |
AcDof5 | 272 | 72 | 130 | 9.4e-36 |
AcDof6 | 361 | 63 | 121 | 1.5e-35 |
AcDof7 | 180 | 22 | 83 | 7.3e-30 |
AcDof8 | 354 | 92 | 150 | 3.9e-36 |
AcDof9 | 285 | 45 | 102 | 9.2e-34 |
AcDof10 | 336 | 53 | 111 | 4.4e-36 |
AcDof11 | 259 | 34 | 92 | 3.6e-36 |
AcDof12 | 361 | 148 | 206 | 3.7e-30 |
AcDof13 | 213 | 85 | 138 | 4.6e-18 |
AcDof14 | 307 | 50 | 108 | 2.6e-36 |
AcDof15 | 363 | 83 | 141 | 1.3e-35 |
AcDof16 | 497 | 138 | 196 | 3.8e-35 |
AcDof17 | 221 | 117 | 174 | 3e-17 |
AcDof18 | 136 | 79 | 135 | 4.2e-32 |
AcDof19 | 478 | 131 | 189 | 7.1e-34 |
AcDof20 | 146 | 77 | 109 | 8e-12 |
AcDof21 | 381 | 97 | 155 | 1.4e-34 |
AcDof22 | 362 | 53 | 111 | 1.4e-33 |
AcDof23 | 212 | 27 | 85 | 9.3e-33 |
AcDof24 | 326 | 107 | 152 | 4.2e-19 |
AcDof25 | 368 | 35 | 93 | 7.6e-36 |
基因 | 氨基酸(AA) | 起始 | 终止 | E值 |
---|---|---|---|---|
AcDof1 | 428 | 114 | 172 | 2.5e-33 |
AcDof2 | 259 | 31 | 89 | 7.4e-33 |
AcDof3 | 408 | 52 | 110 | 2.8e-33 |
AcDof4 | 364 | 31 | 89 | 2.5e-33 |
AcDof5 | 272 | 72 | 130 | 9.4e-36 |
AcDof6 | 361 | 63 | 121 | 1.5e-35 |
AcDof7 | 180 | 22 | 83 | 7.3e-30 |
AcDof8 | 354 | 92 | 150 | 3.9e-36 |
AcDof9 | 285 | 45 | 102 | 9.2e-34 |
AcDof10 | 336 | 53 | 111 | 4.4e-36 |
AcDof11 | 259 | 34 | 92 | 3.6e-36 |
AcDof12 | 361 | 148 | 206 | 3.7e-30 |
AcDof13 | 213 | 85 | 138 | 4.6e-18 |
AcDof14 | 307 | 50 | 108 | 2.6e-36 |
AcDof15 | 363 | 83 | 141 | 1.3e-35 |
AcDof16 | 497 | 138 | 196 | 3.8e-35 |
AcDof17 | 221 | 117 | 174 | 3e-17 |
AcDof18 | 136 | 79 | 135 | 4.2e-32 |
AcDof19 | 478 | 131 | 189 | 7.1e-34 |
AcDof20 | 146 | 77 | 109 | 8e-12 |
AcDof21 | 381 | 97 | 155 | 1.4e-34 |
AcDof22 | 362 | 53 | 111 | 1.4e-33 |
AcDof23 | 212 | 27 | 85 | 9.3e-33 |
AcDof24 | 326 | 107 | 152 | 4.2e-19 |
AcDof25 | 368 | 35 | 93 | 7.6e-36 |
基因 | 处理 | 贮藏时间 | |||||||
---|---|---|---|---|---|---|---|---|---|
0 d | 2 d | 4 d | 6 d | 8 d | |||||
Dof1 | 对照 | 1.00 ± 0.024 | 0.54 ± 0.04* | 0.38 ± 0.045* | 0.17 ± 0.014* | 0.15 ± 0.015* | |||
己醛 | 1.00 ± 0.084 | 0.74 ± 0.048 | 0.45 ± 0.055 | 0.29± 0.024 | 0.33 ± 0.015 | ||||
Dof 2 | 对照 | 1.00 ± 0.054 | 0.91 ± 0.04 | 0.10 ± 0.045* | 0.17 ± 0.014* | 0.31 ± 0.015 | |||
己醛 | 1.00 ± 0.044 | 0.66 ± 0.048* | 0.89 ± 0.055 | 0.36 ± 0.024 | 0.32 ± 0.015 | ||||
Dof 3 | 对照 | 1.00 ± 0.06 | 0.24 ± 0.04* | 0.48 ± 0.05* | 0.37 ± 0.033* | 0.23 ± 0.018 | |||
己醛 | 1.00 ± 0.08 | 0.58 ± 0.06 | 0.74 ± 0.035 | 1.03 ± 0.078 | 0.038 ± 0.0095* | ||||
Dof 4 | 对照 | 1.00 ± 0.049 | 0.11 ± 0.084* | 0.07 ± 0.021* | 0.07 ± 0.0038* | 0.23 ± 0.048 | |||
己醛 | 1.00 ± 0.07 | 0.45 ± 0.028 | 1.89 ± 0. 49 | 4.67 ± 0.21 | 0.027 ± 0.012* | ||||
Dof 8 | 对照 | 1.00 ± 0.027 | 0.57 ± 0.042* | 0.66 ± 0.01* | 0.85 ± 0.09* | 0.57 ± 0.07 | |||
己醛 | 1.00 ± 0.031 | 1.10 ± 0. 37 | 0.98 ± 0.09 | 1.71 ± 0.31* | 0.13 ± 0.01* | ||||
Dof 10 | 对照 | 1.00 ± 0.14 | 0.94 ± 0.039 | 0.90 ± 0.089 | 0.57 ± 0.08* | 1.31 ± 0.15* | |||
己醛 | 1.00 ± 0.13 | 0.92 ± 0.046 | 0.94 ± 0.05 | 2.18 ± 0.25 | 1.74 ± 0.26 | ||||
Dof 11 | 对照 | 1.00 ± 0.078 | 1.11 ± 0.12* | 1.61 ± 0.34 | 0.92 ± 0.28* | 0.76 ± 0.15* | |||
己醛 | 1.00 ± 0.089 | 1.68 ± 0.18 | 1.74 ± 0.15 | 1.36 ± 0.17 | 1.84 ± 0.14 | ||||
Dof 12 | 对照 | 1.00 ± 0.044 | 1.19 ± 0.086 | 1.51 ± 0.15 | 0.57 ± 0.036 | 0.40 ± 0.025 | |||
己醛 | 1.00 ± 0.037 | 1.13 ± 0.076 | 1.38 ± 0.13 | 0.63 ± 0.028 | 0.44 ± 0.039 | ||||
Dof 13 | 对照 | 1.00 ± 0.29 | 0.61 ± 0.049 | 0.54 ± 0.014 | 2.16 ± 0.48 | 2.29 ± 0.18 | |||
己醛 | 1.00 ± 0.034 | 0.29 ± 0.024* | 0.28 ± 0.042* | 1.39 ± 0.21* | 0.53 ± 0.077* | ||||
Dof 14 | 对照 | 1.00 ± 0.035 | 1.00 ± 0.061* | 0.73 ± 0.14* | 0.44 ± 0.025* | 0.25 ± 0.069* | |||
己醛 | 1.00 ± 0.48 | 1.21 ± 0.14 | 1.03 ± 0.038 | 0.68 ± 0.087 | 0.90 ± 0.041 | ||||
Dof 15 | 对照 | 1.00 ± 0.045 | 1.00 ± 0.21* | 1.05 ± 0.018 | 0.93 ± 0.014* | 0.44 ± 0.015* | |||
己醛 | 1.00 ± 0.051 | 1.33 ± 0.11 | 1.09 ± 0.087 | 1.61 ± 0.13 | 0.61 ± 0.015 | ||||
Dof 16 | 对照 | 1.00 ± 0.038 | 1.59 ± 0.013* | 0.42 ± 0.012* | 0.26 ± 0.014* | 0.60 ± 0.015* | |||
己醛 | 1.00 ± 0.044 | 2.42 ± 0.011 | 1.33 ± 0.021 | 0.85 ± 0.011 | 0.80 ± 0.013 | ||||
Dof 17 | 对照 | 1.00 ± 0.071 | 0.94 ± 0.045* | 0.61 ± 0.021* | 0.53 ± 0.014* | 0.58 ± 0.021* | |||
己醛 | 1.00 ± 0.074 | 1.02 ± 0.018 | 0.82 ± 0.014 | 0.88 ± 0.017 | 0.67 ± 0.011 | ||||
Dof 18 | 对照 | 1.00 ± 0.15 | 0.95 ± 0.014* | 1.13 ± 0.017* | 1.59 ± 0.014* | 1.30 ± 0.022 | |||
己醛 | 1.00 ± 0.23 | 4.12 ± 0.047 | 2.08 ± 0.028 | 4.91 ± 0.016 | 0.11 ± 0.011* | ||||
Dof 19 | 对照 | 1.00 ± 0.075 | 1.77 ± 0.044 | 2.24 ± 0.024* | 1.33 ± 0.054* | 1.27 ± 0.018 | |||
己醛 | 1.00 ± 0.025 | 0.54 ± 0.0014* | 2.90 ± 0.047 | 2.07 ± 0.061 | 1.14 ± 0.024* | ||||
Dof 20 | 对照 | 1.00 ± 0.035 | 0.81 ± 0.014 | 0.90 ± 0.021* | 0.47 ± 0.011* | 0.62 ± 0.024 | |||
己醛 | 1.00 ± 0.026 | 0.86 ± 0.013 | 2.43 ± 0.34 | 1.69 ± 0.14 | 0.51 ± 0.021* | ||||
Dof 21 | 对照 | 1.00 ± 0.14 | 1.54 ± 0.017 | 1.11 ± 0.008* | 0.36 ± 0.014* | 0.18 ± 0.032* | |||
己醛 | 1.00 ± 0.015 | 1.48 ± 0.047 | 1.41 ± 0.009 | 0.73 ± 0.031 | 0.86 ± 0.025 | ||||
Dof 22 | 对照 | 1.00 ± 0.023 | 0.49 ± 0.021 | 0.45 ± 0.014* | 0.23 ± 0.022* | 0.31 ± 0.025* | |||
己醛 | 1.00 ± 0.024 | 0.56 ± 0.033 | 0.64 ± 0.049 | 0.59 ± 0.078 | 0.45 ± 0.034 | ||||
Dof 23 | 对照 | 1.00 ± 0.035 | 0.51 ± 0.014 | 0.64 ± 0.021* | 0.31 ± 0.017* | 0.20 ± 0.014 | |||
己醛 | 1.00 ± 0.25 | 0.54 ± 0.074 | 0.76 ± 0.014 | 0.70 ± 0.045 | 0.053 ± 0.0017* | ||||
Dof 25 | 对照 | 1.00 ± 0.085 | 3.06 ± 0.24 | 1.38 ± 0.014* | 0.19 ± 0.0016* | 0.57 ± 0.016 | |||
己醛 | 1.00 ± 0.075 | 2.04 ± 0.17* | 1.79 ± 0.14 | 1.23 ± 0.017 | 0.31 ± 0.0024* |
基因 | 处理 | 贮藏时间 | |||||||
---|---|---|---|---|---|---|---|---|---|
0 d | 2 d | 4 d | 6 d | 8 d | |||||
Dof1 | 对照 | 1.00 ± 0.024 | 0.54 ± 0.04* | 0.38 ± 0.045* | 0.17 ± 0.014* | 0.15 ± 0.015* | |||
己醛 | 1.00 ± 0.084 | 0.74 ± 0.048 | 0.45 ± 0.055 | 0.29± 0.024 | 0.33 ± 0.015 | ||||
Dof 2 | 对照 | 1.00 ± 0.054 | 0.91 ± 0.04 | 0.10 ± 0.045* | 0.17 ± 0.014* | 0.31 ± 0.015 | |||
己醛 | 1.00 ± 0.044 | 0.66 ± 0.048* | 0.89 ± 0.055 | 0.36 ± 0.024 | 0.32 ± 0.015 | ||||
Dof 3 | 对照 | 1.00 ± 0.06 | 0.24 ± 0.04* | 0.48 ± 0.05* | 0.37 ± 0.033* | 0.23 ± 0.018 | |||
己醛 | 1.00 ± 0.08 | 0.58 ± 0.06 | 0.74 ± 0.035 | 1.03 ± 0.078 | 0.038 ± 0.0095* | ||||
Dof 4 | 对照 | 1.00 ± 0.049 | 0.11 ± 0.084* | 0.07 ± 0.021* | 0.07 ± 0.0038* | 0.23 ± 0.048 | |||
己醛 | 1.00 ± 0.07 | 0.45 ± 0.028 | 1.89 ± 0. 49 | 4.67 ± 0.21 | 0.027 ± 0.012* | ||||
Dof 8 | 对照 | 1.00 ± 0.027 | 0.57 ± 0.042* | 0.66 ± 0.01* | 0.85 ± 0.09* | 0.57 ± 0.07 | |||
己醛 | 1.00 ± 0.031 | 1.10 ± 0. 37 | 0.98 ± 0.09 | 1.71 ± 0.31* | 0.13 ± 0.01* | ||||
Dof 10 | 对照 | 1.00 ± 0.14 | 0.94 ± 0.039 | 0.90 ± 0.089 | 0.57 ± 0.08* | 1.31 ± 0.15* | |||
己醛 | 1.00 ± 0.13 | 0.92 ± 0.046 | 0.94 ± 0.05 | 2.18 ± 0.25 | 1.74 ± 0.26 | ||||
Dof 11 | 对照 | 1.00 ± 0.078 | 1.11 ± 0.12* | 1.61 ± 0.34 | 0.92 ± 0.28* | 0.76 ± 0.15* | |||
己醛 | 1.00 ± 0.089 | 1.68 ± 0.18 | 1.74 ± 0.15 | 1.36 ± 0.17 | 1.84 ± 0.14 | ||||
Dof 12 | 对照 | 1.00 ± 0.044 | 1.19 ± 0.086 | 1.51 ± 0.15 | 0.57 ± 0.036 | 0.40 ± 0.025 | |||
己醛 | 1.00 ± 0.037 | 1.13 ± 0.076 | 1.38 ± 0.13 | 0.63 ± 0.028 | 0.44 ± 0.039 | ||||
Dof 13 | 对照 | 1.00 ± 0.29 | 0.61 ± 0.049 | 0.54 ± 0.014 | 2.16 ± 0.48 | 2.29 ± 0.18 | |||
己醛 | 1.00 ± 0.034 | 0.29 ± 0.024* | 0.28 ± 0.042* | 1.39 ± 0.21* | 0.53 ± 0.077* | ||||
Dof 14 | 对照 | 1.00 ± 0.035 | 1.00 ± 0.061* | 0.73 ± 0.14* | 0.44 ± 0.025* | 0.25 ± 0.069* | |||
己醛 | 1.00 ± 0.48 | 1.21 ± 0.14 | 1.03 ± 0.038 | 0.68 ± 0.087 | 0.90 ± 0.041 | ||||
Dof 15 | 对照 | 1.00 ± 0.045 | 1.00 ± 0.21* | 1.05 ± 0.018 | 0.93 ± 0.014* | 0.44 ± 0.015* | |||
己醛 | 1.00 ± 0.051 | 1.33 ± 0.11 | 1.09 ± 0.087 | 1.61 ± 0.13 | 0.61 ± 0.015 | ||||
Dof 16 | 对照 | 1.00 ± 0.038 | 1.59 ± 0.013* | 0.42 ± 0.012* | 0.26 ± 0.014* | 0.60 ± 0.015* | |||
己醛 | 1.00 ± 0.044 | 2.42 ± 0.011 | 1.33 ± 0.021 | 0.85 ± 0.011 | 0.80 ± 0.013 | ||||
Dof 17 | 对照 | 1.00 ± 0.071 | 0.94 ± 0.045* | 0.61 ± 0.021* | 0.53 ± 0.014* | 0.58 ± 0.021* | |||
己醛 | 1.00 ± 0.074 | 1.02 ± 0.018 | 0.82 ± 0.014 | 0.88 ± 0.017 | 0.67 ± 0.011 | ||||
Dof 18 | 对照 | 1.00 ± 0.15 | 0.95 ± 0.014* | 1.13 ± 0.017* | 1.59 ± 0.014* | 1.30 ± 0.022 | |||
己醛 | 1.00 ± 0.23 | 4.12 ± 0.047 | 2.08 ± 0.028 | 4.91 ± 0.016 | 0.11 ± 0.011* | ||||
Dof 19 | 对照 | 1.00 ± 0.075 | 1.77 ± 0.044 | 2.24 ± 0.024* | 1.33 ± 0.054* | 1.27 ± 0.018 | |||
己醛 | 1.00 ± 0.025 | 0.54 ± 0.0014* | 2.90 ± 0.047 | 2.07 ± 0.061 | 1.14 ± 0.024* | ||||
Dof 20 | 对照 | 1.00 ± 0.035 | 0.81 ± 0.014 | 0.90 ± 0.021* | 0.47 ± 0.011* | 0.62 ± 0.024 | |||
己醛 | 1.00 ± 0.026 | 0.86 ± 0.013 | 2.43 ± 0.34 | 1.69 ± 0.14 | 0.51 ± 0.021* | ||||
Dof 21 | 对照 | 1.00 ± 0.14 | 1.54 ± 0.017 | 1.11 ± 0.008* | 0.36 ± 0.014* | 0.18 ± 0.032* | |||
己醛 | 1.00 ± 0.015 | 1.48 ± 0.047 | 1.41 ± 0.009 | 0.73 ± 0.031 | 0.86 ± 0.025 | ||||
Dof 22 | 对照 | 1.00 ± 0.023 | 0.49 ± 0.021 | 0.45 ± 0.014* | 0.23 ± 0.022* | 0.31 ± 0.025* | |||
己醛 | 1.00 ± 0.024 | 0.56 ± 0.033 | 0.64 ± 0.049 | 0.59 ± 0.078 | 0.45 ± 0.034 | ||||
Dof 23 | 对照 | 1.00 ± 0.035 | 0.51 ± 0.014 | 0.64 ± 0.021* | 0.31 ± 0.017* | 0.20 ± 0.014 | |||
己醛 | 1.00 ± 0.25 | 0.54 ± 0.074 | 0.76 ± 0.014 | 0.70 ± 0.045 | 0.053 ± 0.0017* | ||||
Dof 25 | 对照 | 1.00 ± 0.085 | 3.06 ± 0.24 | 1.38 ± 0.014* | 0.19 ± 0.0016* | 0.57 ± 0.016 | |||
己醛 | 1.00 ± 0.075 | 2.04 ± 0.17* | 1.79 ± 0.14 | 1.23 ± 0.017 | 0.31 ± 0.0024* |
[1] | 周玉蝉, 谭兴杰 . 低温与GA3诱导菠萝黑心病的生理机制[J]. 植物生理学报, 1992,28:341-347. |
[2] | Zhou Y C, Pan X P, Qu H X , et al. Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development[J]. Journal of Bioenergetics and Biomembranes, 2014,46:59-69. |
[3] | Zhang Q, Rao X W, Zhang L B , et al. Mechanism of internal browning of pineapple: The role of gibberellins catabolism gene (AcGA2ox) and GAs[J]. Scientific Reports, 2016,6:33344. |
[4] | Ko L, Eccleston K, O’Hare T , et al. Field evaluation of transgenic pineapple (Ananas comosus (L.) Merr.) cv. ‘Smooth Cayenne’ for resistance to blackheart under subtropical conditions[J]. Sci.Hortic, 2013,159:103-108. |
[5] |
Zhou Y, Dahler J M, Underhill S J , et al. Enzymes associated with blackheart development in pineapple fruit[J]. Food Chem, 2003,80:565-572.
doi: 10.1016/S0308-8146(02)00375-8 URL |
[6] | Zhou Y, O’Hare T J, Jobin-Décor M , et al. Transcriptional regulation of a pineapple polyphenol oxidase gene and its relationship to blackheart[J]. Plant Biotechnol.J, 2003,1:463-478. |
[7] | Raimbault A K, Zuily-Fodil Y, Soler A , et al. The expression patterns of bromelain and AcCYS1 correlate with blackheart resistance in pineapple fruits submitted to postharvest chilling stress[J]. J.Plant Physiol, 2013,170:1442-1446. |
[8] | Hong K Q, Zhang L B, Zhan R L , et al. Identification and characterization of phospholipase D genes putatively involved in internal browning of pineapple during postharvest storage[J]. Front. Plant Sci, 2017, 19,8:913. |
[9] |
Gupta S, Malviya N, Kushwaha H , et al. Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor[J]. Planta, 2015,241:549-562.
doi: 10.1007/s00425-014-2239-3 URL |
[10] |
Noguero M, Atif R M, Ochatt S , et al. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants[J]. Plant Sci, 2013,209:32-45.
doi: 10.1016/j.plantsci.2013.03.016 URL |
[11] | Yanagisawa S, Izui K . Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif[J]. J.Biol.Chem, 1993,268:16028-16036. |
[12] | Lijavetzky D, Carbonero P, Vicente-Carbajosa J . Genomewide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families[J]. BMC Evol.Biol, 2003,3, 17. |
[13] | Yang X, Tuskan G A, Cheng M Z . Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication[J]. Plant Physiol, 2006,142:820-830. |
[14] | Shaw L M, McIntyre C L, Gresshoff P M , et al. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation[J]. Funct.Integr.Genomics, 2009,9:485-498. |
[15] | Kushwaha H, Gupta S, Singh V K , et al. Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis[J]. Mol.Biol.Rep, 2011,38:5037-5053. |
[16] | Guo Y, Qiu L J . Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics[J]. PLoS One, 2013,8, e76809. |
[17] | Cai X F, Zhang Y Y, Zhang C J , et al. Genome-wide analysis of plant-specific Dof transcription factor family in tomato[J]. J.Integ.Plant Biol, 2013,55:552-566. |
[18] | Ma J, Li M Y, Wang F , et al. Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage[J]. BMC Genomics, 2015,16:33. |
[19] |
Dong C, Hu H G, Xie J H . Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas[J]. Genome, 2016,59:1085-1100.
doi: 10.1139/gen-2016-0081 URL |
[20] | Venkatesh J, Park S W . Genome-wide Analysis and Expression Profiling of DNA-binding with one zinc finger (Dof) transcription factor family in potato[J]. Plant Physiol.Bioch, 2015,94:73-85. |
[21] | Gualberti G, Papi M, Bellucci L , et al. Mutations in the Dof zinc finger genes DAG2 and DAG1 influence with opposite effects the germination of Arabidopsis seeds[J]. Plant Cell, 2002,14:1253-1263. |
[22] | Venkatesh J, Park S W . Genome-wide Analysis and Expression Profiling of DNA-binding with one zinc finger (Dof) transcription factor family in potato[J]. Plant Physiol.Bioch, 2015,94:73-85. |
[23] |
Ward J M, Cufr C A, Denzel M A , et al. The Dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in Arabidopsis[J]. Plant Cell, 2005,17:475-485.
doi: 10.1105/tpc.104.027722 URL |
[24] | Corrales A R, Nebauer S G, Carrillo L , et al. Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses[J]. J.Exp.Bot, 2014,65:995-1012. |
[25] | Kang W H, Kim S, Lee H A , et al. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper[J]. Sci.Rep, 2016,6:33332. |
[26] | Feng B H, Han Y C, Xiao Y Y , et al. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes[J]. J.Exp.Bot, 2016,67:2263-2275. |
[27] |
Hong K Q, Xian J W, Jia Z W , et al. Genome-wide identification of Dof transcription factors possibly associated with internal browning of postharvest pineapple fruits[J]. Scientia horticulturae, 2019,251(1):80-87.
doi: 10.1016/j.scienta.2019.03.007 URL |
[28] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method [J]. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 URL |
[29] | Selvarajah S, Bauchot A D, John P . Internal browning in cold stored pineapples is suppressed by a postharvest application of 1-methylcyclopropene[J]. Postharvest Biol.Technol, 2001,23:167-170. |
[30] | Nimitkeatkai H, Srilaong V, Kanlayanarat S . Effect of semi-active modified atmosphere on internal browning of cold stored pineapple[M]. In Purvis A C, McGlasson W B, Kanlayanarat S (Eds.). Proceedings of the IVth International conference on managing quality in chains, Vols 1 and 2-The integrated view on fruits and vegetables quality. Leuven 1: Int.Soc.Hort.Sci, 2006, 649-653. |
[31] | Hu H G, Li X P, Dong C , et al. Effects of wax treatment on the physiology and cellular structure of harvested pineapple during cold storage[J]. J.Agric.Food Chem, 2012,60:6613-6619. |
[32] | Zhang Q, Liu Y L, He C C , et al. Postharvest exogenous application of abscisic acid reduces internal browning in pineapple[J]. J. Agric.Food Chem, 2015,63(22):5313-5320. |
[33] | 屈红霞, 唐友林, 谭兴杰 , 等. 采后菠萝贮藏品质与果肉细胞超微结构的变化[J]. 果树学报, 2001,18(3):164-167 |
[34] | Pinhero R G, Paliyath G, Yada R Y , et al. Modulation of phospholipase D and lipoxygenase activities during chilling. Relation to chilling tolerance of maize seedlings[J]. Plant Physiology and Biochemetry, 1998,36(3):213-224. |
[35] | Bruntz R C, Lindsley C W, Brown H A . Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer[J]. Pharmacol Rev, 2014,66:1033-1079. |
[36] |
Qin C B, Wang X M . The Arabidopsis phospholipme D family: Characterization of a calcium-independent and phosphatidylcholine-selective PLDς1 with distinct regulatory domains[J]. Plant Physiol, 2002,128(3):1057-1068.
doi: 10.1104/pp.010928 URL |
[37] | Wang X, Devaiah S P, Zhang W , et al. Signaling functions of phosphatidic acid[J]. Progress in Lipid Research, 2006,45:250-278. |
[38] | Zhao J . Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signaling[J]. Journal of Experimental Botany, 2015,doi: 10.1093/jxb/eru540. |
[39] |
Sun J, You X R, Li L , et al. Effects of a phospholipase D inhibitor on postharvest enzymatic browning and oxidative stress of litchi fruit[J]. Postharvest Biology and Technology, 2011,62:288-294.
doi: 10.1016/j.postharvbio.2011.07.001 URL |
[40] | 李银 . 磷脂酶D抑制剂处理对蟠桃果实采后品质调控的作用研究[M]. 乌鲁木齐:新疆农业大学, 2010. |
[41] | Li D, Jin C Y, Duan S W , et al. MYB89 transcription factor represses seed oil accumulation[J]. Plant Physiology, 2017,173:1211-1225. |
[1] | 肖阳, 李庆荣, 邢东旭, 杨琼. 高温胁迫对化学感受蛋白在家蚕中肠与脂肪体中基因表达的影响[J]. 中国农学通报, 2022, 38(6): 107-115. |
[2] | 肖阳, 李庆荣, 邢东旭, 杨琼. 高温胁迫对耐受性不同的家蚕品种幼虫抗氧化酶活与基因表达的影响[J]. 中国农学通报, 2022, 38(35): 111-118. |
[3] | 姚琼, 全林发, 徐淑, 董易之, 李文景, 池艳艳, 陈炳旭. 粗胫翠尺蛾视蛋白基因的克隆及灯光对其表达量的影响[J]. 中国农学通报, 2022, 38(16): 103-109. |
[4] | 方学良, 付铭, 陈正, 白云秀, 何莹, 曾汉来. 5-氮杂胞苷调节植物基因表达研究进展与应用展望[J]. 中国农学通报, 2022, 38(13): 30-35. |
[5] | 金龙飞, 尹欣幸, 冯美利, 周丽霞, 曹红星. 油棕硼转运通道蛋白基因NIP5的克隆及其在缺硼下的表达分析[J]. 中国农学通报, 2021, 37(9): 22-27. |
[6] | 关思静, 高静, 徐蓉蓉, 葛甜甜, 王楠, 颜永刚, 张岗, 陈莹, 刘阿萍, 程萌格. 甘草生长素反应因子(ARF)基因家族的鉴定及表达分析[J]. 中国农学通报, 2021, 37(29): 20-27. |
[7] | 李荣田, 于晓晨, 孔梦莹, 刘长华. 转基因抗虫水稻‘HD2’不同生长发育阶段cry2A*基因表达量[J]. 中国农学通报, 2021, 37(23): 15-22. |
[8] | 杜晓雪, 黄园园, 马春泉, 李海英. 转录因子BvM14-Dof3.4响应盐胁迫的功能研究[J]. 中国农学通报, 2021, 37(21): 119-125. |
[9] | 李冠嵘, 何好, 朱国庆, 陈诗雅, 徐阳, 金淑梅. RNA-seq揭示碱性盐(NaHCO3)对细叶百合鳞茎基因表达的影响[J]. 中国农学通报, 2021, 37(12): 64-71. |
[10] | 时丕彪, 王军, 费月跃, 洪立洲, 王伟义, 吕远大, 顾闽峰. 盐胁迫对不同藜麦品种幼苗生长及CqNHX1基因表达的影响[J]. 中国农学通报, 2020, 36(33): 19-24. |
[11] | 马春泉, 黄园园, 李海英. 甜菜M14品系BvM14-Dof3.4基因的克隆及响应盐胁迫表达分析[J]. 中国农学通报, 2020, 36(13): 36-41. |
[12] | 刘晓婷,郭九峰. 低温对蒙古口蘑菌丝体漆酶活性及其基因家族表达的影响[J]. 中国农学通报, 2019, 35(3): 40-46. |
[13] | 任海燕,弓桂花,王永康,赵爱玲,薛晓芳,李登科,杜俊杰. 植物胚败育相关基因研究进展[J]. 中国农学通报, 2019, 35(27): 137-141. |
[14] | 倪洪涛,张文彬,丁广洲. 纳米材料对植物基因表达的影响及遗传毒性[J]. 中国农学通报, 2019, 35(12): 137-143. |
[15] | 黄文静,谢 培,杨 洁,蔡兴航,武 婧,孙晓春,宋忠兴,唐志书. 珠子参皂苷合成途径3 个关键酶基因 CAS、DS 和β-AS 时空表达分析[J]. 中国农学通报, 2018, 34(7): 31-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||