[1] |
李艳林, 高志红, 宋娟, 等. 植物生长素响应因子ARF与生长发育[J]. 植物生理学报, 2017, 53(10):1842-1858.
|
[2] |
Singh V K, Rajkumar M S, Garg R, et al. Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea[J]. Scientific Reports, 2017, 7(1):10895.
doi: 10.1038/s41598-017-11327-5
URL
|
[3] |
Tiwari S B, Hagen G, Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription[J]. The Plant Cell, 2003, 15(2):533-543.
doi: 10.1105/tpc.008417
URL
|
[4] |
Liscum E, Reed J W. Genetics of Aux/IAA and ARF action in plant growth and development[J]. Plant Molecular Biology, 2002, 49(3-4):387-400.
pmid: 12036262
|
[5] |
Lim P O, Lee I C, Kim J, et al. Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity[J]. Journal of Experimental Botany, 2010, 61(5):1419-1430.
doi: 10.1093/jxb/erq010
URL
|
[6] |
Ellis C M, Nagpal P, Young J C, et al. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana[J]. Development (Cambridge, England), 2005, 132(20):4563-4574.
doi: 10.1242/dev.02012
URL
|
[7] |
Kelley D R, Arreola A, Gallagher T L, et al. ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis[J]. Development (Cambridge, England), 2012, 139(6):1105-1109.
doi: 10.1242/dev.067918
URL
|
[8] |
Liu Z N, Miao L, Huo R X, et al. ARF2-ARF4 and ARF5 are essential for female and male gametophyte development in Arabidopsis[J]. Plant & cell Physiology, 2018, 59(1):179-189.
|
[9] |
Wu Y F, Reed G W, Tian C Q. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction[J]. Development (Cambridge, England), 2006, 133(21):4211-4218.
doi: 10.1242/dev.02602
URL
|
[10] |
Goetz M, Vivian-Smith A, Johnson S D, et al. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis[J]. The Plant Cell, 2006, 18(8):1873-1886.
doi: 10.1105/tpc.105.037192
URL
|
[11] |
Wang B, Xue J S, Yu Y H, et al. Fine regulation of ARF17 for anther development and pollen formation[J]. BMC Plant Biology, 2017, 17(1):243.
doi: 10.1186/s12870-017-1185-1
pmid: 29258431
|
[12] |
Finet C, Berne-Dedieu A, Scutt C P, et al. Evolution of the ARF gene family in land plants: old domains, new tricks[J]. Molecular Biology and Evolution, 2013, 30(1):45-56.
doi: 10.1093/molbev/mss220
URL
|
[13] |
Wilmoth J C, Wang S, Tiwari S B, et al. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation[J]. Plant Journal for Cell & Molecular Biology, 2010, 43(1):118-130.
|
[14] |
Feng Z H, Zhu J, Du X L, et al. Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana[J]. Planta, 2012, 236(4):1227-1237.
doi: 10.1007/s00425-012-1673-3
URL
|
[15] |
Wang J W, Wang L J, Mao Y B, et al. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis[J]. The Plant Cell, 2005, 17(8):2204-2216.
doi: 10.1105/tpc.105.033076
URL
|
[16] |
Mochida K, Sakurai T, Seki H, et al. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume[J]. The Plant Journal, 2017, 89(2):181-194.
doi: 10.1111/tpj.13385
URL
|
[17] |
Chen C J, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009
URL
|
[18] |
Wang D, Pei K, Fu Y, et al. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa)[J]. Gene, 2007, 394(1):13-24.
doi: 10.1016/j.gene.2007.01.006
URL
|
[19] |
Zouine M, Fu Y Y, Wang H, et al. Characterization of the tomato ARF gene family uncovers a multi-levels post-transcriptional regulation including alternative splicing[J]. PloS one, 2014, 9(1):e84203.
doi: 10.1371/journal.pone.0084203
URL
|
[20] |
Shen C J, Yue R Q, Sun T, et al. Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula[J]. Frontiers in Plant Science, 2015, 6:73.
|
[21] |
赵艳, 瓮巧云, 马海莲, 等. 谷子ARF基因家族的鉴定与生物信息学分析[J]. 植物遗传资源学报, 2017, 17(3):547-554.
|
[22] |
Singh V K, Rajkumar M S, Garg R, et al. Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea[J]. Scientific Reports, 2017, 7(1):10895.
doi: 10.1038/s41598-017-11327-5
URL
|
[23] |
Okushima Y, Overvoorde P J, Arima K, et al. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19[J]. The Plant Cell, 2005, 17(2):444-463.
doi: 10.1105/tpc.104.028316
URL
|
[24] |
Pekker I, Alvarez J P, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity[J]. The Plant cell, 2005, 17(11):2899-2910.
doi: 10.1105/tpc.105.034876
URL
|
[25] |
Park J E, Park J Y, Kim Y S, et al. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis[J]. Journal of Biological Chemistry, 2007, 282(13):10036-10046.
doi: 10.1074/jbc.M610524200
URL
|
[26] |
Huang D Q, Wu W R, Abrams S R, et al. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors[J]. Journal of Experimental Botany, 2008, 59:2991-3007.
doi: 10.1093/jxb/ern155
URL
|
[27] |
Chen L, Ren F, Zhong H, et al. Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus[J]. Acta Biochimica et Biophysica Sinica, 2010, 42(2):154-164.
doi: 10.1093/abbs/gmp113
URL
|
[28] |
Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray[J]. The Plant Journal, 2002, 31(3):279-292.
doi: 10.1046/j.1365-313X.2002.01359.x
URL
|