中国农学通报 ›› 2021, Vol. 37 ›› Issue (12): 64-71.doi: 10.11924/j.issn.1000-6850.casb2020-0400
所属专题: 生物技术
李冠嵘(), 何好, 朱国庆, 陈诗雅, 徐阳, 金淑梅(
)
收稿日期:
2020-08-25
修回日期:
2020-11-16
出版日期:
2021-04-25
发布日期:
2021-05-13
通讯作者:
金淑梅
作者简介:
李冠嵘,男,1997年出生,黑龙江哈尔滨人,学生,硕士,研究方向:分子植物育种研究。通信地址:150040 黑龙江省哈尔滨市南岗区和兴路26号东北林业大学,Tel:18746399076,E-mail: 基金资助:
Li Guanrong(), He Hao, Zhu Guoqing, Chen Shiya, Xu Yang, Jin Shumei(
)
Received:
2020-08-25
Revised:
2020-11-16
Online:
2021-04-25
Published:
2021-05-13
Contact:
Jin Shumei
摘要:
本研究旨在揭示细叶百合在盐碱逆境中的基因表达表达情况,为合理利用盐碱地和大面积种植百合提供理论基础。以一年生的细叶百合鳞茎为材料,经过20 mmol/L NaHCO3处理24 h后,用Illumina HiSeqTM2000测序平台进行转录组测序。共测得56828个mRNA的注释信息,其中,55433个Unigene被注释到Nr数据库,26973条Unigene被注释到KOG数据库,23610条Unigene被注释到GO数据库,13142条Unigene被注释到KEGG数据库的五大类中。共鉴定出390个差异表达基因。选取了9个与盐碱胁迫密切相关的基因进行qPCR验证,9个基因的表达结果与转录组的结果基本趋于一致。通过细叶百合在碳酸盐(NaHCO3)逆境下的转录组对比数据,提供了许多的基因表达通路和表达量的差异,为合理利用盐碱地和大面积种植百合提供理论基础。
中图分类号:
李冠嵘, 何好, 朱国庆, 陈诗雅, 徐阳, 金淑梅. RNA-seq揭示碱性盐(NaHCO3)对细叶百合鳞茎基因表达的影响[J]. 中国农学通报, 2021, 37(12): 64-71.
Li Guanrong, He Hao, Zhu Guoqing, Chen Shiya, Xu Yang, Jin Shumei. Salt-stress (NaHCO3) Revealed by RNA-seq: Effect on Gene Expression in Lilium pumilum Bulb[J]. Chinese Agricultural Science Bulletin, 2021, 37(12): 64-71.
基因编号 | 基因注释 | 引物F(5’-3’) | 引物R(5’-3’) |
---|---|---|---|
TRINITY_DN4382 6_c0_g1_i2 | BEL1-like homeodomain protein 3 | AGTACCACAGCTGCAGACAC | ACAGATTTCTCAGGCAGGCC |
TRINITY_DN4296 9_c0_g1_i1 | Mini-chromsome maintenance | GGTTACGGGAGTCTCTGCTC | TCCGAATGCCCACTGAGTTT |
TRINITY_DN3310 7_c0_g1_i1 | luminal-binding protein 2 | TGGTGTTATCGCTGGCTTGA | CTGCTGATATCCTGCCGTGT |
TRINITY_DN4776 4_c0_g1_i2 | sugar transporter ERD6 | CTCCGGTGTGGTCTCTGTTG | ATAGCAAGCCATCCCACGAC |
TRINITY_DN3883 3_c0_g1_i2 | probable proline transporter 2 | TCAACAGCTACCAGCCTCAG | GCTGCCATTCCTCGGAGATT |
TRINITY_DN4372 8_c0_g1_i2 | gibberellin-regulated protein 2 | TCTCTCATGGCCAAGGCA | GCTTTAGGGTTGCAGTGT |
TRINITY_DN4803 0_c0_g2_i3 | ferric reduction oxidase 8 | GAGCGGAAGAATGGGCAAAC | ACCGGATTTGAGAGAGTGGC |
TRINITY_DN4277 8_c0_g1_i5 | cucumber peeling cupredoxin | AGAAGCTGGCTGTCACTGTC | AGGAGTGTCAGCAGTGAAGC |
TRINITY_DN3846 9_c0_g1_i3 | peroxisome biogenesis protein 7 | TCCGAGTCTCACGAGTCCAT | CAGTAGGCATGCTCCCGAAA |
基因编号 | 基因注释 | 引物F(5’-3’) | 引物R(5’-3’) |
---|---|---|---|
TRINITY_DN4382 6_c0_g1_i2 | BEL1-like homeodomain protein 3 | AGTACCACAGCTGCAGACAC | ACAGATTTCTCAGGCAGGCC |
TRINITY_DN4296 9_c0_g1_i1 | Mini-chromsome maintenance | GGTTACGGGAGTCTCTGCTC | TCCGAATGCCCACTGAGTTT |
TRINITY_DN3310 7_c0_g1_i1 | luminal-binding protein 2 | TGGTGTTATCGCTGGCTTGA | CTGCTGATATCCTGCCGTGT |
TRINITY_DN4776 4_c0_g1_i2 | sugar transporter ERD6 | CTCCGGTGTGGTCTCTGTTG | ATAGCAAGCCATCCCACGAC |
TRINITY_DN3883 3_c0_g1_i2 | probable proline transporter 2 | TCAACAGCTACCAGCCTCAG | GCTGCCATTCCTCGGAGATT |
TRINITY_DN4372 8_c0_g1_i2 | gibberellin-regulated protein 2 | TCTCTCATGGCCAAGGCA | GCTTTAGGGTTGCAGTGT |
TRINITY_DN4803 0_c0_g2_i3 | ferric reduction oxidase 8 | GAGCGGAAGAATGGGCAAAC | ACCGGATTTGAGAGAGTGGC |
TRINITY_DN4277 8_c0_g1_i5 | cucumber peeling cupredoxin | AGAAGCTGGCTGTCACTGTC | AGGAGTGTCAGCAGTGAAGC |
TRINITY_DN3846 9_c0_g1_i3 | peroxisome biogenesis protein 7 | TCCGAGTCTCACGAGTCCAT | CAGTAGGCATGCTCCCGAAA |
样品 | Read数 | 碱基数 | GC含量 | %≥Q30 |
---|---|---|---|---|
CK1 | 40,321,512 | 5,967,250,186 | 49.76 | 90.44 |
CK2 | 37,657,206 | 5,575,627,054 | 50.61 | 89.35 |
Salt1 | 40,795,804 | 6,049,302,264 | 50.35 | 89.68 |
Salt2 | 40,741,664 | 6,053,455,981 | 49.82 | 89.90 |
样品 | Read数 | 碱基数 | GC含量 | %≥Q30 |
---|---|---|---|---|
CK1 | 40,321,512 | 5,967,250,186 | 49.76 | 90.44 |
CK2 | 37,657,206 | 5,575,627,054 | 50.61 | 89.35 |
Salt1 | 40,795,804 | 6,049,302,264 | 50.35 | 89.68 |
Salt2 | 40,741,664 | 6,053,455,981 | 49.82 | 89.90 |
[1] |
Zhu G, Weixi L, Feng Z, et al. RNA-seq analysis reveals alternative splicing under salt stress in cotton, Gossypium davidsonii[J]. Bmc Genomics, 19(1):73.
doi: 10.1186/s12864-018-4449-8 URL |
[2] | Xie R, Pan X, Zhang J, et al. Effect of salt-stress on gene expression in citrus roots revealed by RNA-seq[J]. Functional & Integrative Genomics, 2018,18(2):155. |
[3] |
Ma S, Lv L, Meng C, et al. Genome-Wide Analysis of Abscisic Acid Biosynjournal, Catabolism, and Signaling in Sorghum Bicolor under Saline-Alkali Stress[J]. Biomolecules, 2019,9(12):823.
doi: 10.3390/biom9120823 URL |
[4] |
Xu J, Chen Q, Liu P, et al. Integration of mRNA and miRNA analysis reveals the molecular mechanism underlying salt andalkali stress tolerance in tobacco[J]. International journal of molecular sciences, 2019,20(10):2391.
doi: 10.3390/ijms20102391 URL |
[5] |
Xu Y, Magwanga R O, Yang X, et al. Genetic regulatory networks for salt-alkali stress in Gossypium hirsutum with differing morphological characteristics[J]. BMC genomics, 2020,21(1):1-19.
doi: 10.1186/s12864-019-6419-1 URL |
[6] |
Okada T, Singh M B, Bhalla P L. Transcriptome profiling of Lilium longiflorum generative cells by cDNA microarray[J]. Plant cell reports, 2007,26(7):1045-1052.
doi: 10.1007/s00299-006-0300-9 URL |
[7] |
Obermeyer G, Fragner L, Lang V, et al. Dynamic Adaption of Metabolic Pathways during Germination and Growth of Lily Pollen Tubes after Inhibition of the Electron Transport Chain[J]. Plant Physiology, 2013,162(4):1822-33.
doi: 10.1104/pp.113.219857 pmid: 23660836 |
[8] |
Liu X, Wang Q, Gu J, et al. Vernalization of Oriental hybrid lily ‘Sorbonne’: changes in physiology metabolic activity and molecular mechanism[J]. Molecular Biology Reports, 2014,41(10):6619-6634.
doi: 10.1007/s11033-014-3545-3 URL |
[9] | Zhang D M, Ming F. De novo transcriptome characterization of Lilium 'Sorbonne' and key enzymes related to the flavonoid biosynjournal[J]. Molecular Genetics & Genomics, 2015,290(1):399. |
[10] |
Huang J, Liu X, Wang J, et al. Transcriptomic analysis of Asiatic lily in the process of vernalization via RNA-seq[J]. Molecular Biology Reports, 2014,41(6):3839-52.
doi: 10.1007/s11033-014-3250-2 pmid: 24557890 |
[11] |
Masumi Y, Hirohide U, Takashi H. Floral pigmentation pattern in Oriental hybrid lily (Lilium spp.) cultivar ‘Dizzy’ is caused by transcriptional regulation of anthocyanin biosynjournal genes[J]. Journal of Plant Physiology, 2018,228:85-91.
doi: 10.1016/j.jplph.2018.05.008 URL |
[12] |
Li W, Liu X, Lu Y. Transcriptome comparison reveals key candidate genes in response to vernalization of Oriental lily[J]. Bmc Genomics, 2016,17(1):664.
doi: 10.1186/s12864-016-2955-0 URL |
[13] |
shahin A, Van kaauwen M, Esselink D, et al. Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa[J]. Bmc Genomics, 2012,13(1):640.
doi: 10.1186/1471-2164-13-640 URL |
[14] |
Wang J, Yang Y, Liu X, et al. Transcriptome profiling of the cold response and signaling pathways in Lilium lancifolium[J]. Bmc Genomics, 2014,15(1):203.
doi: 10.1186/1471-2164-15-203 URL |
[15] |
Wang J, Wang Q, Yang Y, et al. De novo assembly and characterization of stress transcriptome and regulatory networks under temperature, salt and hormone stresses in Lilium lancifolium[J]. Molecular biology reports, 2014,41(12) 8231-8245.
doi: 10.1007/s11033-014-3725-1 URL |
[16] | 苏小霞. 基于转录组和miRNA测序的细叶百合鳞茎休眠解除的分子机理[D]. 哈尔滨:东北林业大学, 2018: 1-120. |
[17] | 杨柳慧, 汪王, 刘艳秋, 等. 细叶百合LpWRKY20基因的克隆和表达分析[J]. 西北林学院学报, 2019,34(03):104-110. |
[18] | 汪王, 苏小霞, 杨柳慧, 等. 细叶百合LpSVP基因的克隆及其表达分析[J]. 杨凌:西北林学院学报, 2018,33(4):89-94. |
[19] | 关春景. 细叶百合3个NAC转录因子的克隆及其对烟草的遗传转化[D]. 哈尔滨:东北林业大学, 2018: 1-66. |
[20] | 孙明茂, 刘丽霞. 百合种质全生育期耐碱性综合评价[J]. 北方园艺, 2018(14):83-90. |
[21] | 宋卫娜, 赵森森, 武明珠, 等. 烟草BELL基因家族鉴定及其温室条件下的表达模式分析[J]. 烟草科技, 2020,53(01):1-11. |
[22] | Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K. ERD6, a c DNA clone for an early dehydration-inducedgene of Arabidopsis, encodes a putative sugar transporter[J]. Biochimica et Biophysica Acta (BBA) - Biomembranes 1998,1370:187-191. |
[23] | 岳川. 茶树糖类相关基因的挖掘及其在茶树冷驯化中的表达研究[D]. 北京:中国农业科学院, 2015: 1-167. |
[24] | 李景艳, 高飞, 周宜君, 等. 盐芥GRP7基因的克隆和逆境表达分析[J]. 西北农林科技大学学报:自然科学版, 2016,44(006):150-156. |
[25] | 张阳. 小麦条锈菌MADSbox转录因子PsMcm1的鉴定和功能分析[D]. 杨凌:西北农林科技大学, 2015: 1-56. |
[26] | Jain A, Connolly E L. Mitochondrial iron transport and homeostasis in plants[J]. Frontiers in Plant Science, 2013,4:348. |
[27] |
Ezaki B. Functions of two genes in aluminium (Al) stress resistance: repression of oxidative damage by the AtBCB gene and promotion of efflux of Al ions by the NtGDI1gene[J]. Journal of Experimental Botany, 2005,56(420):2661-2671.
doi: 10.1093/jxb/eri259 URL |
[28] | 王明, 谢洁, 丁红映, 等. 马铃薯stuProT1.2基因的克隆与非生物胁迫的表达分析[J]. 分子植物育种印刷版, 2019,17(19):6243-6255. |
[29] |
Valente M A, Faria J A, Soares-Ramos J R, et al. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco[J]. J Exp Bot., 2009,60(2):533-546.
doi: 10.1093/jxb/ern296 URL |
[30] | 姚琨, 练从龙, 王菁菁, 等. 胡杨PePEX11基因参与调节盐胁迫下拟南芥的抗氧化能力[J]. 北京林业大学学报, 2018,40:23-32. |
[1] | 肖阳, 李庆荣, 邢东旭, 杨琼. 高温胁迫对化学感受蛋白在家蚕中肠与脂肪体中基因表达的影响[J]. 中国农学通报, 2022, 38(6): 107-115. |
[2] | 翟彩娇, 张蛟, 崔士友, 陈澎军. 盐逆境对耐盐水稻穗部性状及产量构成因素的影响[J]. 中国农学通报, 2022, 38(4): 1-9. |
[3] | 肖阳, 李庆荣, 邢东旭, 杨琼. 高温胁迫对耐受性不同的家蚕品种幼虫抗氧化酶活与基因表达的影响[J]. 中国农学通报, 2022, 38(35): 111-118. |
[4] | 陈柳宏, 赵春雷, 王希, 李彦丽, 丁广洲, 陈丽. 单细胞转录组测序技术及其在植物研究中的应用[J]. 中国农学通报, 2022, 38(3): 87-93. |
[5] | 陈敏敏, 聂功平, 李心, 周琳, 杨柳燕, 张永春. 自然高温条件下百合叶绿素荧光特性分析[J]. 中国农学通报, 2022, 38(29): 86-95. |
[6] | 陈明月, 姜涛, 赵冬梅, 白莉, 张雪琦, 孟姣. 先进的组学技术在植物抗病研究中的应用[J]. 中国农学通报, 2022, 38(24): 86-91. |
[7] | 王晨, 张居萍, 丁晗. miR172调控植物生长发育及逆境胁迫的研究进展[J]. 中国农学通报, 2022, 38(17): 27-34. |
[8] | 姚琼, 全林发, 徐淑, 董易之, 李文景, 池艳艳, 陈炳旭. 粗胫翠尺蛾视蛋白基因的克隆及灯光对其表达量的影响[J]. 中国农学通报, 2022, 38(16): 103-109. |
[9] | 方学良, 付铭, 陈正, 白云秀, 何莹, 曾汉来. 5-氮杂胞苷调节植物基因表达研究进展与应用展望[J]. 中国农学通报, 2022, 38(13): 30-35. |
[10] | 金龙飞, 尹欣幸, 冯美利, 周丽霞, 曹红星. 油棕硼转运通道蛋白基因NIP5的克隆及其在缺硼下的表达分析[J]. 中国农学通报, 2021, 37(9): 22-27. |
[11] | 王雪, 王盛昊, 于冰. 转录因子和启动子互作分析技术及其在植物应答逆境胁迫中的研究进展[J]. 中国农学通报, 2021, 37(33): 112-119. |
[12] | 关思静, 高静, 徐蓉蓉, 葛甜甜, 王楠, 颜永刚, 张岗, 陈莹, 刘阿萍, 程萌格. 甘草生长素反应因子(ARF)基因家族的鉴定及表达分析[J]. 中国农学通报, 2021, 37(29): 20-27. |
[13] | 孙铭阳, 徐世强, 顾艳, 梅瑜, 周芳, 李静宇, 王继华. 穿心莲全长转录组测序及特性分析[J]. 中国农学通报, 2021, 37(27): 82-89. |
[14] | 高小宁, 吴自林, 黄咏虹, 刘睿, 齐永文. 甘蔗叶片响应褐锈病菌(Puccinia melanocephala)侵染的转录组分析[J]. 中国农学通报, 2021, 37(24): 102-109. |
[15] | 朱永兴, 关雅静, 李新, 张春义. 盐胁迫下玉米离子变化及转录组分析[J]. 中国农学通报, 2021, 37(24): 110-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||