中国农学通报 ›› 2021, Vol. 37 ›› Issue (7): 150-158.doi: 10.11924/j.issn.1000-6850.casb2020-0154
尹文露(), 刘丽, 赵谭军, 韩森荣, 宋坚, 李莹莹, 常亚青, 湛垚垚(
)
收稿日期:
2020-06-05
修回日期:
2020-10-19
出版日期:
2021-03-05
发布日期:
2021-03-17
通讯作者:
湛垚垚
作者简介:
尹文露,男,1997年出生,辽宁大连人,硕士研究生,研究方向:生物化学与分子生物学。通信地址:116023 辽宁省大连市沙河口区黑石礁街道52号 大连海洋大学,E-mail: 基金资助:
Yin Wenlu(), Liu Li, Zhao Tanjun, Han Senrong, Song Jian, Li Yingying, Chang Yaqing, Zhan Yaoyao(
)
Received:
2020-06-05
Revised:
2020-10-19
Online:
2021-03-05
Published:
2021-03-17
Contact:
Zhan Yaoyao
摘要:
MicroRNAs(MiRNAs)是一种长度为20 nt左右的内源调控型非编码RNA,主要参与基因的转录后调控,在真核生物的生长发育、细胞分化和免疫防御等过程中发挥重要作用。海胆和海参属棘皮类动物,是高等的海洋无脊椎动物,它们不仅是研究无脊椎动物向脊椎动物进化的重要模式生物,其中的一些种类还是重要的渔业资源,具有较高的经济价值。近年来,探明各类miRNAs在海胆和海参生长发育及生理代谢过程中的调控功能及调控机制已逐渐成为海胆和海参研究领域的热点。本研究中综述了近年来海胆和海参中miRNAs的研究成果和相关进展,以期进一步丰富和完善海胆和海参中miRNAs的基础资料,为系统了解和掌握海胆和海参中miRNAs的序列特点、生物学功能及其参与调控重要生理过程的分子机制提供参考资料。
中图分类号:
尹文露, 刘丽, 赵谭军, 韩森荣, 宋坚, 李莹莹, 常亚青, 湛垚垚. 海胆和海参中microRNAs的研究进展[J]. 中国农学通报, 2021, 37(7): 150-158.
Yin Wenlu, Liu Li, Zhao Tanjun, Han Senrong, Song Jian, Li Yingying, Chang Yaqing, Zhan Yaoyao. MicroRNAs in Sea Urchins and Sea Cucumbers: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 150-158.
[1] | Ambros V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans[J]. Cell, 1989,57(1):49-57. |
[2] | 任丽媛, 赵谭军, 尹文露, 等. 水产动物“miRNA-靶基因”模体(motif)生物功能研究进展[J/OL]. http://kns.cnki.net/kcms/detail/45.1369.Q.20200325.1647.004.html.2020-03-25. |
[3] | 孙广杰, 戴立胜, 袁宝, 等. miR-26a和miR-30d在牛不同组织中表达的规律分析[J]. 中国农学通报, 2013,29(11):29-33. |
[4] | 王静毅, 刘菊华, 金志强, 等. 香蕉冷胁迫相关MicroRNA差异表达分析[J]. 中国农学通报, 2019,35(5):49-57. |
[5] | 汪成合. miRNA激活p21WAF1/CIP1基因表达及其对膀胱癌细胞的抑制作用 [D]. 武汉:华中科技大学, 2015. |
[6] | 张娇. Dnmt基因对褐飞虱翅型分化的调控及miRNA的靶向分析[D]. 南京:南京农业大学, 2016. |
[7] | 张连峰. miRNA-29靶基因[J]. 中国比较医学杂志, 2014(5):87. |
[8] | 中华人民共和国农业部. 2009中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2009. |
[9] | 中华人民共和国农业部. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019. |
[10] | Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. European Molecular Biology Organization Journal, 2004,23(20):4051-4060. |
[11] | Glen M, William L, Beverly L. RNA polymerase III transcribes human microRNAs[J]. Nature Structural & Molecular Biologyvolume, 2006,13(12):1097-1101. |
[12] |
Han J. The Drosha-DGCR8 complex in primary microRNA processing[J]. Genes & Development, 2004,18(24):3016-3027.
doi: 10.1101/gad.1262504 URL pmid: 15574589 |
[13] | Yi R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs[J]. Genes & Development, 2003,17(24):3011-3016. |
[14] | Kim, Narry V. MicroRNA biogenesis: coordinated cropping and dicing[J]. Nature Reviews Molecular Cell Biology, 2005,6(5):376-385. |
[15] | 徐晶, 张桂山, 孙丽敏, 等. 辽宁绒山羊皮肤毛囊mir-1298-5p靶基因预测及表达载体构建[J]. 中国农学通报, 2018,34(5):123-128. |
[16] | Lee I, Ajay S, Yook J, et al. New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites[J]. Genome Research, 2009,19(7):1175-1183. |
[17] | Castanotto D, Rossi J. The Promises and Pitfalls of RNA-interference-based Therapeutics[J]. Nature, 2009,457:426-433. |
[18] |
Song J, Stoeckius M, Maaskola J, et al. Select microRNAs are essential for early development in the sea urchin[J]. Developmental Biology, 2012,362(1):104-113.
URL pmid: 22155525 |
[19] | 韩琳, 冯新港. Wnt信号通路及其在动物生长发育过程中的作用[J]. 中国兽医寄生虫病, 2008(3):47-52. |
[20] |
Nadezda S, Priya A, Archana D, et al. MicroRNAs regulate β-catenin of the Wnt signaling pathway in early sea urchin development[J]. Developmental Biology, 2015,402(1):127-141.
URL pmid: 25614238 |
[21] |
Anton R, Chatterjee S, Simundza J, et al. A Systematic Screen for Micro-RNAs Regulating the Canonical Wnt Pathway[J]. Plos One, 2011,6(10):e26257.
URL pmid: 22043311 |
[22] | Nina F, Nadezda A, Syed A, et al. Inhibition of microRNA suppression of Dishevelled results in Wnt pathway associated developmental defects[J]. Development, 2018,145(23):167130. |
[23] | Serena R, Devescovi V, Granchi D, et al. MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31[J]. Gene, 2013,527(1):321-331. |
[24] |
Stepicheva N, Song J. microRNA-31 modulates skeletal patterning in the sea urchin embryos[J]. Development, 2015,142(21):3769-3780.
URL pmid: 26400092 |
[25] |
Adomako-Ankomah A, Ettensohn C. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation[J]. Development, 2013,140(20):4214-4225.
URL pmid: 24026121 |
[26] | Chen Yang, Li Yingying, Zhan Yaoyao, et al. Identification of molecular markers for superior quantitative traits in a novel sea cucumber strain by comparative microRNA-mRNA expression profiling[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020,35:100686. |
[27] | Chen Muyan, Wang Shanshan, Li Xingke, et al. The potential contribution of miRNA-200-3p to the fatty acid metabolism by regulating AjEHHADH during aestivation in sea cucumber[J]. Peer J, 2018,6:e5703. |
[28] | Zhou Zunchun, Sun Dapeng, Yang Aifu, et al. Molecular characterization and expression analysis of a complement component 3 in the sea cucumber (Apostichopus japonicus)[J]. Fish & Shellfish Immunology, 2011,31(4):547. |
[29] | He Xiaobin, Jing Zhizhong, Cheng Guofeng. MicroRNAs: New regulators of Toll-Like receptor signalling pathways[J]. Biomed Research International, 2014,2014:945169. |
[30] | 翟钰, 曹雁惠, 张峰, 等. 刺参补体AjC3活性相关miRNA的筛选与初步研究[J]. 大连海洋大学学报, 2015,30(6):585-591. |
[31] |
Liu Ming, Lang Nan, Qiu Meng, et al. miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells[J]. International Journal of Cancer, 2011,128(6):1269-1279.
doi: 10.1002/ijc.25452 URL pmid: 20473940 |
[32] | Zhong Lei, Zhang Feng, Zhai Yu, et al. Identification and comparative analysis of complement C3-associated microRNAs in immune response of Apostichopus japonicus by high-throughput sequencing[J]. Scientific Reports, 2015,5(1):17763. |
[33] |
Lv Zhimeng, Li Chenghua, Zhang Pengjun, et al. miR-200 modulates coelomocytes antibacterial activities and LPS priming via targeting Tollip in Apostichopus japonicus[J]. Fish & Shellfish Immunology, 2015,45(2):431-436.
URL pmid: 25910848 |
[34] |
Zhou Xiaoxu, Chang Yaqing, Zhan Yaoyao, et al. Integrative mRNA-miRNA interaction analysis associate with immune response of sea cucumber, Apostichopus japonicus, based on transcriptome database[J]. Fish & Shellfish Immunology, 2018,72:69-76.
doi: 10.1016/j.fsi.2017.10.031 URL pmid: 29054825 |
[35] | Wendlandt E, Graff J, Gioannini T, et al. The role of microRNAs miR-200b and miR-200c in TLR4 signaling and NF-κB activation[J]. Innate Immunity, 2012,18(6):846-855. |
[36] | Lu Meng, Zhang Pengjuan, Li Chenghua, et al. miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1 in vitro and in vivo[J]. Scientific Reports, 2015,5(1):12608. |
[37] |
Lv Miao, Chen Huahui, Shao Yina, et al. miR-92a regulates coelomocytes apoptosis in sea cucumber, Apostichopus japonicus, via targeting, Aj14-3-3 ζ, in vivo[J]. Fish & Shellfish Immunology, 2017,69:211-217.
URL pmid: 28860073 |
[38] |
Sun Hongjuan, Zhou Zunchun, Ying Dong, et al. In-depth profiling of miRNA regulation in the body wall of sea cucumber, Apostichopus japonicus, during skin ulceration syndrome progression[J]. Fish & Shellfish Immunology, 2018,79:202-208.
doi: 10.1016/j.fsi.2018.05.020 URL pmid: 29763733 |
[39] | Tian Yi, Shang Yanpeng, Guo R, et al. miR-10 involved in salinity-induced stress responses and targets TBC1D5 in the sea cucumber, Apostichopus japonicas[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2020,242. |
[40] |
Roy S, Leidal A, Ye J, et al. Autophagy-Dependent Shuttling of TBC1D5 Controls Plasma Membrane Translocation of GLUT1 and Glucose Uptake[J]. Molecular Cell, 2017,67(1):84-95.
URL pmid: 28602638 |
[41] | Meng Xianliang, Dong Yunwei, Dong Shuanglin, et al. Large-scale mortality and limited expression of heat shock proteins of aestivating sea cucumbers Apostichopus japonicus after acute salinity decrease[J]. Aquaculture Research, 2015,46(7):1573-1581. |
[42] | Tian Yi, Shang Yanpeng, Guo R, et al. Salinity stress-induced differentially expressed miRNAs and target genes in sea cucumbers Apostichopus japonicus[J]. Cell Stress & Chaperones, 2019,24(4):719-733. |
[43] | Huo Da, Sun Lina, Li Xiaoni, et al. Differential Expression of miRNAs in the Respiratory Tree of the Sea Cucumber Apostichopus japonicus under Hypoxia Stress[J]. G3 & 58 Genesgenetics, 2017,7(11):1129. |
[44] |
Igarashi H, Kurihara H, Mitsuhashi K, et al. Association of MicroRNA-31-5p with Clinical Efficacy of Anti-EGFR Therapy in Patients with Metastatic Colorectal Cancer[J]. Annals of Surgical Oncology, 2015,22(8):2640-2648.
doi: 10.1245/s10434-014-4264-7 URL pmid: 25472647 |
[45] | Foley N H, Bray I S, Tivnan A, et al. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2[J]. Molecular Cancer, 2010,9(1):83. |
[46] |
Liu Xiujuan, Fu Bo, Chen Ddapeng, et al. miR-184 and miR-150 promote renal glomerular mesangial cell aging by targeting Rab1a and Rab31[J]. Experimental Cell Research, 2015,336(2):192-203.
URL pmid: 26165933 |
[47] | 孙湘平. 关注海洋: 中国近海及毗领海域海洋知识[M] 北京: 中国国际广播出版社, 2012. |
[48] | 赵冲. 温度对中间球海胆存活、行为和生长的影响:对底播增殖的启示[A]. 中国水产学会.第三届现代海洋(淡水)牧场学术研讨会摘要集[C]. 2019:28-29. |
[49] | Li Chao, Xu Dongxue. Understanding microRNAs regulation in heat shock response in the sea cucumber Apostichopus japonicus[J]. Fish & Shellfish Immunology, 2018,81:214-220. |
[50] |
Li Jiangfeng, Meng Shuai, Xu Mingjie, et al. Downregulation of N6-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N6-methyladenosine levels[J]. Oncotarget, 2017,9(3):3752-3764.
URL pmid: 29423080 |
[51] | Huard K, Gosset J, Montgomery J, et al. Optimization of a Dicarboxylic Series for in vivo Inhibition of Citrate Transport by the Solute Carrier 13 (SLC13) Family[J]. Journal of Medicinal Chemistry, 2016,59(3):1165-1175. |
[1] | 孙歌, 接伟光, 胡崴, 张颖智, 乔巍, 魏丽娜, 姜怡彤, 白莉. 菌根真菌及菌根辅助细菌对农作物发育的影响研究进展[J]. 中国农学通报, 2022, 38(9): 88-92. |
[2] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[3] | 钱振家, 徐金铖, 余友斌, 张成林, 刘晃. 水流对鱼类游泳行为和生理代谢的影响的研究进展[J]. 中国农学通报, 2022, 38(32): 133-138. |
[4] | 王月敏, 柯玉琴, 谢榕榕, 李春英, 李文卿. 喷施微肥对定位施肥烟株成熟期生理代谢的影响[J]. 中国农学通报, 2022, 38(31): 24-30. |
[5] | 董寅壮, 王堽, 於丽华, 耿贵. 亚铁胁迫对甜菜幼苗矿质元素积累的影响[J]. 中国农学通报, 2022, 38(3): 11-16. |
[6] | 黄雅丽, 马风云, 王霞, 郝军, 杜振宇, 刘方春, 石群, 马丙尧. 滴灌水量对核桃幼苗生长的影响[J]. 中国农学通报, 2022, 38(22): 62-68. |
[7] | 王晨, 张居萍, 丁晗. miR172调控植物生长发育及逆境胁迫的研究进展[J]. 中国农学通报, 2022, 38(17): 27-34. |
[8] | 方学良, 付铭, 陈正, 白云秀, 何莹, 曾汉来. 5-氮杂胞苷调节植物基因表达研究进展与应用展望[J]. 中国农学通报, 2022, 38(13): 30-35. |
[9] | 李怀德, 崔同霞, 范重秀, 姚友旭, 惠和平. 定植密度和生长年限对黄芩生长发育和产量及种植效益的影响[J]. 中国农学通报, 2022, 38(12): 41-46. |
[10] | 于红梅, 袁华招, 关玲, 陈晓东, 唐山远, 王庆莲, 赵密珍. 低温贮藏对草莓苗的生理变化及生长发育的影响[J]. 中国农学通报, 2021, 37(9): 35-41. |
[11] | 宋磊, 次仁央金, 王小强, 何燕. 小麦对高温胁迫的响应机制研究进展[J]. 中国农学通报, 2021, 37(36): 6-12. |
[12] | 闫艳, 徐丽娜, 李丽杰, 张志勇. 玉米苗期生长发育对钾浓度的响应[J]. 中国农学通报, 2021, 37(35): 1-6. |
[13] | 陈路路, 孙哲, 田昌庚, 刘尚刚, 郑建利, 赵丰玲. 鲜食型紫薯新品种‘泰紫薯1号’的选育及生长发育规律研究[J]. 中国农学通报, 2021, 37(30): 25-31. |
[14] | 郭志祥, 何成兴, 普春晓, 陈福寿, 尚慧, 番华彩, 白亭亭, 曾莉. 草地贪夜蛾寄主选择性及对其生长发育的影响[J]. 中国农学通报, 2021, 37(3): 139-144. |
[15] | 王雅倩, 张尚昆, 李冬兵. 木醋液对元宝枫幼苗生长发育的影响[J]. 中国农学通报, 2021, 37(25): 41-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||