中国农学通报 ›› 2022, Vol. 38 ›› Issue (9): 88-92.doi: 10.11924/j.issn.1000-6850.casb2021-0420
孙歌(), 接伟光, 胡崴, 张颖智, 乔巍, 魏丽娜, 姜怡彤, 白莉
收稿日期:
2021-04-17
修回日期:
2021-07-16
出版日期:
2022-03-25
发布日期:
2022-04-02
作者简介:
孙歌,女,1997年出生,黑龙江黑河人,在读研究生,研究方向:微生物生态学。通信地址:150066 黑龙江省哈尔滨市哈南工业新城核心区哈南十九路1号,Tel:0451-86653623,E-mail: 基金资助:
SUN Ge(), JIE Weiguang, HU Wei, ZHANG Yingzhi, QIAO Wei, WEI Lina, JIANG Yitong, BAI Li
Received:
2021-04-17
Revised:
2021-07-16
Online:
2022-03-25
Published:
2022-04-02
摘要:
菌根真菌因其对农作物具有促生作用,并对各种环境提供保护,多年来广受重视。近年来有学者发现这一现象与菌根辅助细菌相关。为更好地了解菌根真菌、菌根辅助细菌及二者间协同作用对农作物生长发育、土壤理化性质及土壤中微生物多样性影响等方面,本文总结了菌根真菌及菌根辅助细菌的作用机制,并对二者间协同作用对农作物生长发育、抗逆性、土壤质量及土壤内微生物环境的促进、提高及丰富作用进行归纳。在此基础上提出研究展望,认为应更深入地研究有关菌根真菌及菌根辅助细菌间的协同作用,并大力推广微生物菌肥的使用。
中图分类号:
孙歌, 接伟光, 胡崴, 张颖智, 乔巍, 魏丽娜, 姜怡彤, 白莉. 菌根真菌及菌根辅助细菌对农作物发育的影响研究进展[J]. 中国农学通报, 2022, 38(9): 88-92.
SUN Ge, JIE Weiguang, HU Wei, ZHANG Yingzhi, QIAO Wei, WEI Lina, JIANG Yitong, BAI Li. Effects of Mycorrhizal Fungi and Mycorrhizal Helper Bacteria on Crop Development: A Review[J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 88-92.
[1] | 邹嵘, 马嘉楠, 张凤. 根癌农杆菌介导的菌根真菌遗传转化研究进展[J]. 菌物研究:1-12[2021-08-25]. https://doi.org/10.13341/j.jfr.2020.1411. |
[2] |
GUO Y, CHEN X, WU Y, et al. Natural revegetation of a semiarid habitat alters taxonomic and functional diversity of soil microbial communities[J]. Science of the total environment, 2018, 635(1):598-606.
doi: 10.1016/j.scitotenv.2018.04.171 URL |
[3] | SANGWAN S, PRASANNA R. Mycorrhizae helper bacteria: unlocking their potential as bioenhancers of plant-arbuscular mycorrhizal fungal associations[J]. Microb ecol, 2021, https://doi:10.1007/s00248-021-01831-7. |
[4] |
GARBAYE J. Tansley review No. 76 helper bacteria: a new di-mension to the mycorrhizal symbiosis[J]. New phytologist, 1994, 128(2):197-210.
doi: 10.1111/nph.1994.128.issue-2 URL |
[5] | SEEMAKRAM W, SUEBRASRI T, KHAEKHUM S, et al. Growth enhancement of the highly prized tropical trees siamese rosewood and burma padauk[J]. Rhizosphere, 2021, https://doi.org/10.1016/j.rhisph.2021.100363. |
[6] |
ROCHA I, MA Y, PABLO S A, et al. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops[J]. Frontiers in plant science, 2019, 10(6):1357-1373.
doi: 10.3389/fpls.2019.01357 URL |
[7] | 姚延轩, 接伟光, 胡崴, 等. 微生物菌肥对大豆生长发育及根际土壤性质的影响综述[J]. 湖北农业科学, 2019, 58(20):21-24,38. |
[8] |
MARTIN F, KOHLER A, MURAT C, et al. Unearthing the roots of ectomycorrhizal symbioses[J]. Nature reviews. microbiology, 2016, 14(12):760-773.
doi: 10.1038/nrmicro.2016.149 URL |
[9] | HODGE A, FITTER A H, DÍAZ S M. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the national academy of sciences of the United States of America, 2010, 107(31):13754-13759. |
[10] | 梁倩倩, 李敏, 刘润进, 等. 全球变化下菌根真菌的作用及其作用机制[J]. 生态学报, 2014, 34(21):6039-6048. |
[11] | 曹本福, 姜海霞, 陆引罡, 等. 烟草与丛枝菌根真菌的共生效应研究进展[J]. 中国土壤与肥料, 2021(1):327-338. |
[12] |
ADELEKE R, DAMES J F. Kalaharituber pfeilii and associated bacterial interactions[J]. South African journal of botany, 2014, 90(90):68-73.
doi: 10.1016/j.sajb.2013.10.003 URL |
[13] |
RIGAMONTE T A, PYLRO V S, DUARTE G F. The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae associations[J]. Brazilian journal of microbiology, 2010, 41(4):832-840.
doi: 10.1590/S1517-83822010000400002 URL |
[14] | MIRANSARI M. Interactions between arbuscular mycorrhizal fungi and soil bacteria[J]. Applied Microbiology & Biotechnology, 2011, 89(4):917-930. |
[15] |
RATTI N, KUMAR S, VERMA H N, et al. Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation[J]. Microbiological research, 2001, 156(2):145-149.
doi: 10.1078/0944-5013-00095 URL |
[16] | 谭树朋, 唐超, 郭绍霞, 等. 菌根真菌与细菌的相互作用研究进展[J]. 青岛农业大学学报:自然科学版, 2013, 30(4):240-246. |
[17] |
HESTRIN R, HAMMER E C, MUELLER C W, et al. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition[J]. Communications biology, 2019, 2(1):233-242.
doi: 10.1038/s42003-019-0481-8 URL |
[18] | 李丽丽, 杨洪一. 菌根真菌与菌根辅助细菌互作研究进展[J]. 黑龙江农业科学, 2020(9):121-124. |
[19] | 葛伟, 董醇波, 张芝元, 等. 外生菌根真菌与内生细菌共生互作的研究进展[J]. 微生物学通报,1-15[2021-04-17]. https://doi.org/ 10.13344/j.microbiol.china.201155. |
[20] | 王倩, 李振双, 杨富成, 等. 广西凭祥红锥-马尾松混交林菌根际微生物群落结构[J]. 菌物学报,1-15[2021-04-17]. https://doi.org/10.13346/j.mycosystema.200339. |
[21] |
LEYVA-ROJAS J A, COY-BARRERA E, HAMPP R. Interaction with soil bacteria affects the growth and amino acid content of Piriformospora indica[J]. Molecules, 2020, 25(3):572-587.
doi: 10.3390/molecules25030572 URL |
[22] | 刘荣林, 蔡柏岩, 葛菁萍. 丛枝菌根真菌、根瘤菌和解磷细菌之间相互作用的研究进展[J]. 中国农学通报, 2020, 36(35):22-27. |
[23] | BRITTON J, RAMEZANI A, PELLETIER D, et al. A multiscale model of fungal impact on chemotactic behavior of mycorrhizal helper bacteria[J]. Biophysical Journal, 2021, 120(3):68a-69a. |
[24] |
GAMALERO E, TROTTA A, MASSA N, et al. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition[J]. Mycorrhiza, 2004, 14(3):185-192.
doi: 10.1007/s00572-003-0256-3 URL |
[25] |
XIE L, LEHVÄVIRTA S, TIMONEN S, et al. Species-specific synergistic effects of two plant growth-promoting microbes on green roof plant biomass and photosynthetic efficiency[J]. PloS one, 2018, 13(12):e0209432-12.
doi: 10.1371/journal.pone.0209432 URL |
[26] |
DUPONNOIS R, PLENCHETTE C. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species[J]. Mycorrhiza, 2003, 13(2):85-91.
doi: 10.1007/s00572-002-0204-7 URL |
[27] |
BOURLES A, GUENTAS L, CHARVIS C, et al. Co-inoculation with a bacterium and arbuscular mycorrhizal fungi improves root colonization, plant mineral nutrition, and plant growth of a Cyperaceae plant in an ultramafic soil[J]. Mycorrhiza, 2020, 30(1):121-131.
doi: 10.1007/s00572-019-00929-8 URL |
[28] |
SHINDE S, ZERBS S, COLLART F R, et al. Pseudomonas fluorescens increases mycorrhization and modulates expression of antifungal defense response genes in roots of aspen seedlings[J]. BMC plant biology, 2019, 19(4):4-17.
doi: 10.1186/s12870-018-1610-0 URL |
[29] | I RODRÍGUEZ-GUTIÉRREZ, D RAMÍREZ-MARTÍNEZ, GARIBAY-ORIJEL R, et al. Sympatric species develop more efficient ectomycorrhizae in the pinus-laccaria symbiosis[J]. Revista mexicana de biodiversidad, 2019, 90(Dec):e902868-2879. |
[30] |
CUSANO A M, BURLINSON P, DEVEAU A, et al. Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis[J]. Environmental microbiology reports, 2011, 3(2):203-210.
doi: 10.1111/emi4.2011.3.issue-2 URL |
[31] |
BIZOS G, PAPATHEODOROU E M, CHATZISTATHIS T, et al. The role of microbial inoculants on plant protection, growth stimulation, and crop productivity of the olive tree (Olea europea L.)[J]. Plants, 2020, 9(6):743-761.
doi: 10.3390/plants9060743 URL |
[32] | 郭霞, 李茜茜. 黑松-美味牛肝菌菌根辅助细菌的筛选与鉴定[J]. 森林与环境学报, 2019, 39(3):315-319. |
[33] |
FREY-KLETT P, GARBAYE J, TARKKA M. The mycorrhiza helper bacteria revisited[J]. New phytologist, 2010, 176(1):22-36.
doi: 10.1111/nph.2007.176.issue-1 URL |
[34] |
ABIRAMI G, DURGADEVI R, VELMURUGAN P, et al. Gene expressing analysis indicates the role of pyrogallol as a novel antibiofilm and antivirulence agent against Acinetobacter baumannii[J]. Archives of microbiology, 2020, 203(1):1-10.
doi: 10.1007/s00203-020-02009-4 URL |
[35] | JANSSENS T, OLAF T, HARRIE B, et al. Biological activities associated with the volatile compound 2,5-bis(1-methylethyl)-pyrazine[J]. FEMS microbiology letters, 2019(3):3-13. |
[36] | 侯亮亮, 吴小芹, 盛江梅. 4株菌根辅助细菌对苗木猝倒病菌的抑制作用[J]. 南京林业大学学报:自然科学版, 2011, 35(1):43-46. |
[37] |
RAKSHAPAL S, SUMIT K S, ALOK K. Synergy between Glomus fasciculatum and a beneficial pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions[J]. Mycorrhiza, 2013, 23(1):35-44.
doi: 10.1007/s00572-012-0447-x URL |
[38] | FRANCISCA R, ALEXANDRE P M, RUI M, et al. Bacteria could help ectomycorrhizae establishment under climate variations[J]. Mycorrhiza, 2021(prepublish):1-7. |
[39] | JOSE M B, AZCÓN C, AZCÓN A. Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure[J]. Microorganisms in soils: roles in genesis and functions, 2005, 3(Soil Biology):195-212. |
[40] | FERREIRA D A, SILVA T, PYLRO V S, et al. Soil microbial diversity affects the plant-root colonization by arbuscular mycorrhizal fungi[J]. Microbial Ecology, 2020(prepublish):1-4. |
[41] |
ALESSANDRA, TURRINI, LUCIANO, et al. Functional complementarity of arbuscular mycorrhizal fungi and associated microbiota: the challenge of translational research[J]. Frontiers in plant science, 2018, 9(Sep):1407-1407.
doi: 10.3389/fpls.2018.01407 URL |
[42] | 李信茹, 米屹东, 魏源, 等. 丛枝菌根真菌-植物共生体系在重金属污染土壤修复上的研究进展[J]. 现代化工, 2020, 40(5):14-18. |
[43] |
LI H, CHEN X W, WONG M H. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains[J]. Chemosphere, 2016, 145(FEB.):224-230.
doi: 10.1016/j.chemosphere.2015.10.067 URL |
[44] |
LEIFHEIT E, LEHMANN A, MATTHIAS C. Potential effects of microplastic on arbuscular mycorrhizal fungi[J]. Frontiers in Plant Science, 2021, 12(Feb):626709-626718.
doi: 10.3389/fpls.2021.626709 URL |
[45] | 屈庆秋. 菌根真菌及其促生细菌提高油松降解柴油的作用[D]. 杨凌:西北农林科技大学, 2010,13-15. |
[46] |
PAOLA, BONFANTE, FRANCESCO, et al. The mycobiota: fungi take their place between plants and bacteria[J]. Current opinion in microbiology, 2019, 49(Jun):18-25.
doi: 10.1016/j.mib.2019.08.004 URL |
[47] |
MOLINEUX C J, CONNOP S P, GANGE A C. Manipulating soil microbial communities in extensive green roof substrates[J]. The Science of the total environment, 2014, 493(493):632-638.
doi: 10.1016/j.scitotenv.2014.06.045 URL |
[48] |
DABIRE A P, HIEN V, KISA M, et al. Responses of soil microbial catabolic diversity to arbuscular mycorrhizal inoculation and soil disinfection[J]. Mycorrhiza, 2007, 17(6):537-545.
doi: 10.1007/s00572-007-0126-5 URL |
[49] |
DASSEN, CORTOIS, MARTENS, et al. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity[J]. Mol ecol, 2017, 26(15):4085-4098.
doi: 10.1111/mec.2017.26.issue-15 URL |
[50] |
LIU J, HU J, CHENG Z, et al. Can phosphorus (P)-releasing bacteria and earthworm (Eisenia fetida L.) co-enhance soil P mobilization and mycorrhizal P uptake by maize (Zea mays L.)?[J]. Journal of soils and sediments, 2021, 21(2):1-11.
doi: 10.1007/s11368-020-02743-8 URL |
[1] | 李少杰, 肖清山, 宋福强, 王歆. 丛枝菌根(AM)真菌扩培技术研究进展[J]. 中国农学通报, 2022, 38(9): 115-122. |
[2] | 张杰, 祝志华, 张慧, 胡猛, 邱晨, 蔡宪文. 山东南四湖省级自然保护区野生鸟类调查及疫源疫病防控初探[J]. 中国农学通报, 2022, 38(9): 75-80. |
[3] | 孙树晴, 丁炜, 孙瑞, 张希财, 兰国玉, 陈伟, 杨川, 吴志祥. 不同林龄橡胶林土壤细菌群落组成及多样性研究[J]. 中国农学通报, 2022, 38(9): 93-100. |
[4] | 张腾帅, 张艳英, 刘京国. 变性梯度凝胶电泳法研究季节变化对散养芦花鸡肠道菌群的影响[J]. 中国农学通报, 2022, 38(8): 129-134. |
[5] | 周小红. 基于多元回归分析的农作物产量估测模型研究[J]. 中国农学通报, 2022, 38(8): 152-156. |
[6] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[7] | 刘小英, 吴碧君, 张游南, 黄飞龙, 刘国强. 基于ISSR标记的龙眼种质资源遗传多样性及亲缘关系分析[J]. 中国农学通报, 2022, 38(31): 60-65. |
[8] | 赵雅儒, 邳植, 刘蕊, 马语嫣, 吴则东. 不同甜菜单胚细胞质雄性不育系与保持系的遗传多样性分析[J]. 中国农学通报, 2022, 38(30): 35-40. |
[9] | 孙志广, 潘根, 陈庭木, 李景芳, 赵利君, 迟铭, 徐波, 邢运高, 刘金波, 刘晓敏, 葛高宁, 徐锦涛, 王宝祥, 徐大勇. 基于SNP标记的穞稻与栽培稻的遗传多样性分析及萌发耐淹性评价[J]. 中国农学通报, 2022, 38(30): 6-13. |
[10] | 董寅壮, 王堽, 於丽华, 耿贵. 亚铁胁迫对甜菜幼苗矿质元素积累的影响[J]. 中国农学通报, 2022, 38(3): 11-16. |
[11] | 石丽红, 孙梅, 唐海明, 文丽, 李超, 程凯凯, 李微艳, 肖小平. 不同施肥模式下稻田土壤氮组分及微生物多样性研究进展[J]. 中国农学通报, 2022, 38(27): 106-110. |
[12] | 聂晓瑀, 于春静, 卢倩, 崔继哲. 微生物在农作物秸秆好氧堆肥过程中的研究进展[J]. 中国农学通报, 2022, 38(26): 76-81. |
[13] | 尤梦瑶, 万璐, 闫佳佳, 张赫, 郑春英. 甘草内生菌研究概况[J]. 中国农学通报, 2022, 38(26): 20-26. |
[14] | 洪慈清, 孙语遥, 莫雯婧, 方云, 陈芳容, 桂芳泽, 关雄, 潘晓鸿. 茶叶浸取液制备的纳米银对土壤微生物的影响[J]. 中国农学通报, 2022, 38(23): 56-63. |
[15] | 苏凤秀. 广西北部湾滨海地区公园植物多样性调查研究[J]. 中国农学通报, 2022, 38(22): 79-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||