中国农学通报 ›› 2022, Vol. 38 ›› Issue (27): 106-110.doi: 10.11924/j.issn.1000-6850.casb2021-0921
石丽红(), 孙梅, 唐海明(
), 文丽, 李超, 程凯凯, 李微艳, 肖小平
收稿日期:
2021-09-24
修回日期:
2021-12-30
出版日期:
2022-10-05
发布日期:
2022-09-21
通讯作者:
唐海明
作者简介:
石丽红,女,1981年出生,湖南湘阴人,副研究员,硕士,研究方向:农田生态环境。通信地址:410125 湖南省长沙市芙蓉区远大二路730号 湖南省土壤肥料研究所,Tel:0731-84696102,E-mail: 基金资助:
SHI Lihong(), SUN Mei, TANG Haiming(
), WEN Li, LI Chao, CHENG Kaikai, LI Weiyan, XIAO Xiaoping
Received:
2021-09-24
Revised:
2021-12-30
Online:
2022-10-05
Published:
2022-09-21
Contact:
TANG Haiming
摘要:
有机氮是土壤中氮的主要存在形式,土壤氮矿化、氮素有效性与有机氮组分关系密切,明确土壤有机氮组分对氮矿化的贡献,有利于为采用科学合理的田间管理措施提供理论依据。不同的施肥模式是影响稻田土壤氮组分及微生物多样性较为关键的因素之一。因此,本文从不同施肥方式对稻田土壤氮素形态和矿化作用特征、土壤氨氧化菌和硝化及反硝化菌群功能基因数量变化、土壤氮素转化微生物活性和胞外酶、土壤氮素转化微生物群落结构多样性等方面展开了相应的讨论,提出有机无机肥配施有利于提高稻田土壤有机氮组分的微生物利用性、土壤的氮供给,采用有机无机肥配施是提高稻田土壤肥力的有效管理措施。
中图分类号:
石丽红, 孙梅, 唐海明, 文丽, 李超, 程凯凯, 李微艳, 肖小平. 不同施肥模式下稻田土壤氮组分及微生物多样性研究进展[J]. 中国农学通报, 2022, 38(27): 106-110.
SHI Lihong, SUN Mei, TANG Haiming, WEN Li, LI Chao, CHENG Kaikai, LI Weiyan, XIAO Xiaoping. Soil Nitrogen Fractions and Microbial Diversity in Paddy Field Under Different Fertilization Modes: A Review[J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 106-110.
[1] |
伍思平, 眭锋, 肖小军, 等. 南方双季稻区不同复种方式对稻田综合温室效应的影响[J]. 核农学报, 2020, 34(2):376-382.
doi: 10.11869/j.issn.100-8551.2020.02.0376 |
[2] |
YANG D, XIAO X, HE N, et al. Effects of reducing chemical fertilizer combined with organic amendments on ammonia-oxidizing bacteria and archaea communities in a low-fertility red paddy field[J]. Environmental science and pollution research, 2020, 27:29422-29432.
doi: 10.1007/s11356-020-09120-5 URL |
[3] | YU Q, HU X, MA J, et al. Effects of long-term organic material applications on soil carbon and nitrogen fractions in paddy fields[J]. Soil and tillage research, 2020, 196:104483. |
[4] | CUI N X, CAI M, ZHANG X, et al. Runoff loss of nitrogen and phosphorus from a rice paddy field in the east of China: effects of long-term chemical N fertilizer and organic manure applications[J]. Global ecology and conservation, 2020, 22:e01011. |
[5] | CHEN L, LI F, LI W, et al. Organic amendment mitigates the negative impacts of mineral fertilization on bacterial communities in Shajiang black soil[J]. Applied soil ecology, 2020, 150:103457. |
[6] |
ZHENG H B, CHEN Y W, CHEN Q M, et al. High-density planting with lower nitrogen application increased early rice production in a double-season rice system[J]. Agronomy journal, 2020, 112(1):205-214.
doi: 10.1002/agj2.20033 URL |
[7] |
STANFORD G, SMITH S J. Nitrogen mineralization potential of soils[J]. Soil science society of america proceeding, 1972, 36(3):465-472.
doi: 10.2136/sssaj1972.03615995003600030029x URL |
[8] | BREMNER J M. Organic forms of soil nitrogen. In:Black C A.ed.,Methods of Soil Analysis[M]. Agronomy 9. Madison:American Society of Agronomy Incorporation, 1965:1148-1178. |
[9] | 王媛, 周建斌, 杨学云. 长期不同培肥处理对土壤有机氮组分及氮素矿化特性的影响[J]. 中国农业科学, 2010, 43(6):1173-1180. |
[10] | YAZHINI R I, JAYANTHI D, GNANACHITRA M, et al. Effect of long term fertiliser and manure application on soil nitrogen fractions in an Inceptisol under fingermillet: maize cropping sequence[J]. Journal of pharmacognosy and phytochemistry, 2020, 9:1112-1116. |
[11] |
WU H Q, DU SY, ZHANG Y L, et al. Effects of irrigation and nitrogen fertilization on greenhouse soil organic nitrogen fractions and soil-soluble nitrogen pools[J]. Agricultural water management, 2019, 216:415-424.
doi: 10.1016/j.agwat.2019.02.020 URL |
[12] | OUYANG Y, NORTON J M. Short-term nitrogen fertilization affects microbial community composition and nitrogen mineralization functions in an agricultural soil[J]. Applied and environmental microbiology, 2020, 86(5):e02278-19. |
[13] |
ASHRAF M N, HU C, WU L, et al. Soil and microbial biomass stoichiometry regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization[J]. Journal of soils and sediments, 2020, 20(8):3103-3113.
doi: 10.1007/s11368-020-02642-y URL |
[14] |
AKBARI F, FALLAH S, DAHMARDEH M, et al. Interaction effects of nitrogen and phosphorus fertilizer on nitrogen mineralization of wheat residues in a calcareous soil[J]. Journal of plant nutrition, 2020, 43(1):1-12.
doi: 10.1080/01904167.2019.1659328 URL |
[15] |
KADER M A, YEASMIN S, SOLAIMAN Z M, et al. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils[J]. European journal of soil biology, 2017, 80:27-34.
doi: 10.1016/j.ejsobi.2017.03.004 URL |
[16] | JIA R, WANG K, LI L, et al. Abundance and community succession of nitrogen-fixing bacteria in ferrihydrite enriched cultures of paddy soils is closely related to Fe(III)-reduction[J]. Science of the total environment, 2020, 720:137633. |
[17] | CHEN J, WANG P F, WANG C, et al. Effects of decabromodiphenyl ether and planting on the abundance and community composition of nitrogen-fixing bacteria and ammonia oxidizers in mangrove sediments: a laboratory microcosm study[J]. Science of the total environment, 2018,616-617(1):1045-1055. |
[18] |
SRITHEP P C, PREEYAPORN P, TAWAN L. Contribution of ammonia-oxidizing archaea and ammonia-oxidizing bacteria to ammonia oxidation in two nitrifying reactors[J]. Environmental science and pollution research, 2018, 25(3):8676-8687.
doi: 10.1007/s11356-017-1155-z URL |
[19] |
SHI Y L, LIU X R, ZHANG Q W. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil[J]. Science of the total environment, 2019, 686(8):199-211.
doi: 10.1016/j.scitotenv.2019.05.394 URL |
[20] | YANG W L, QUE H L, WANG S W, et al. High temporal resolution measurements of ammonia emissions following different nitrogen application rates from a rice field in the Taihu Lake Region of China[J]. Environmental pollution, 2020, 257(5):113489. |
[21] |
FANG Y, WANG F, JIA X B, et al. Distinct responses of ammonia-oxidizing bacteria and archaea to green manure combined with reduced chemical fertilizer in a paddy soil[J]. Journal of soils and sediments, 2019, 19:1613-1623.
doi: 10.1007/s11368-018-2154-5 URL |
[22] |
LEE J A, FRANCIS C A. Deep nirS amplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition[J]. Environmental microbiology, 2017, 19(12):4897-4912.
doi: 10.1111/1462-2920.13920 URL |
[23] | ANTONIO C H, DAVID C G, JESÚS G L, et al. Effect of nitrogen fertilisers on nitrous oxide emission, nitrifier and denitrifier abundance and bacterial diversity in closed ecological systems[J]. Applied soil ecology, 2020, 145:103380. |
[24] |
LI Q L, GUO X B, LU Y Y, et al. Impacts of adding FGDG on the abundance of nitrification and denitrification functional genes during dairy manure and sugarcane pressmud co-composting[J]. Waste management, 2016, 56:63-70.
doi: 10.1016/j.wasman.2016.07.007 URL |
[25] |
AI C, LIANG G Q, SUN J W, et al. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil[J]. Soil biology and biochemistry, 2013, 57:30-42.
doi: 10.1016/j.soilbio.2012.08.003 URL |
[26] |
DUAN R, LONG X E, TANG Y F, et al. Effects of different fertilizer application methods on the community of nitrifiers and denitrifiers in a paddy soil[J]. Journal of soils and sediments, 2018, 18(1):24-38.
doi: 10.1007/s11368-017-1738-9 URL |
[27] | CHEN X L, HENRIKSEN T M, SVENSSON K, et al. Long-term effects of agricultural production systems on structure and function of the soil microbial community[J]. Applied soil ecology, 2020, 147:103387. |
[28] |
WU L N, JIANG Y, ZHAO F Y, et al. Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil[J]. Scientific reports, 2020, 10:9568.
doi: 10.1038/s41598-020-66648-9 URL |
[29] | TANG H M, LI C, XIAO X P, et al. Functional diversity of rhizosphere soil microbial communities in response to different tillage and crop residue retention in a double-cropping rice field[J]. PLoS one, 2020, 15(5):e0233642. |
[30] |
ZHANG Q, LIANG G Q, GUO T F, et al. Evident variations of fungal and actinobacterial cellulolytic communities associated with different humified particle-size fractions in a long-term fertilizer experiment[J]. Soil biology and biochemistry, 2017, 113:1-13.
doi: 10.1016/j.soilbio.2017.05.022 URL |
[31] |
WEI L, RAZAVIA B S, WANG W Q, et al. Labile carbon matters more than temperature for enzyme activity in paddy soil[J]. Soil biology and biochemistry, 2019, 135:134-143.
doi: 10.1016/j.soilbio.2019.04.016 URL |
[32] |
WANG X K, WANG G, GUO T, et al. Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity and yield performance in a dryland maize cropping system[J]. European journal of soil science, 2021, 72(1):400-412.
doi: 10.1111/ejss.12954 URL |
[33] | ULLAH S, AI C, HUANG S H, et al. The responses of extracellular enzyme activities and microbial community composition under nitrogen addition in an upland soil[J]. PLoS one, 2019, 14(9):e0223026. |
[34] |
TANG H M, XIAO X P, TANG W G, et al. Dynamic change of soil enzyme activities and soil microbe during rice main growth stages in different long-term fertilizer regimes[J]. Journal of pure and applied microbiology, 2017, 11(2):649-660.
doi: 10.22207/JPAM.11.2.02 URL |
[35] |
LIU Y, HOU H, JI J, et al. Long-term fertiliser (organic and inorganic) input effects on soil microbiological characteristics in hydromorphic paddy soils in China[J]. Soil research, 2019, 57(5):459-466.
doi: 10.1071/SR18141 URL |
[36] |
MIAO F H, LI Y, CUI S, et al. Soil extracellular enzyme activities under long-term fertilization management in the croplands of China: a meta-analysis[J]. Nutrient cycling in agroecosystems, 2019, 114:125-138.
doi: 10.1007/s10705-019-09991-2 URL |
[37] |
LI Y L, TREMBLAY J, BAINARD L D, et al. Long-term effects of nitrogen and phosphorus fertilization on soil microbial community structure and function under continuous wheat production[J]. Environmental microbiology, 2020, 22(3):1066-1088.
doi: 10.1111/1462-2920.14824 URL |
[38] |
LIAN T X, WANG G H, YU Z H, et al. Bacterial communities incorporating plant-derived carbon in the soybean rhizosphere in mollisols that differ in soil organic carbon content[J]. Applied soil ecology, 2017, 119:375-383.
doi: 10.1016/j.apsoil.2017.07.016 URL |
[39] | LI X, HAN S, WAN W J, et al. Manure fertilizes alter the nitrite oxidizer and comammox community composition and increase nitrification rates[J]. Soil and tillage research, 2020, 204:104701. |
[40] | TONG L H, ZHU L, LV Y Z, et al. Response of organic carbon fractions and microbial community composition of soil aggregates to long-term fertilizations in an intensive greenhouse system[J]. Journal of soils and sediments, 2020, 204:641-652. |
[41] | 徐白璐, 钟文辉, 黄欠如, 等. 长期施肥酸性旱地土壤硝化活性及自养硝化微生物特征[J]. 环境科学, 2017, 38(8):3473-3481. |
[1] | 崔莹莹, 周波, 陈义勇, 刘嘉裕, 黎健龙, 唐颢, 唐劲驰. 广东茶区土壤肥力时空变化分析与综合评价[J]. 中国农学通报, 2023, 39(1): 85-95. |
[2] | 孙树晴, 丁炜, 孙瑞, 张希财, 兰国玉, 陈伟, 杨川, 吴志祥. 不同林龄橡胶林土壤细菌群落组成及多样性研究[J]. 中国农学通报, 2022, 38(9): 93-100. |
[3] | 曾婕, 余浪, 达布希拉图, 李云驹. 磷基土壤调理剂在低磷红壤上对小白菜生长的影响[J]. 中国农学通报, 2022, 38(9): 81-87. |
[4] | 黄浩, 谢晋, 袁文彬, 王初亮, 陈坤华, 曾繁东, 梁增发, 苏诏, 王维. 不同有机物料对烤烟根系特征及氮磷钾积累量的影响[J]. 中国农学通报, 2022, 38(8): 51-57. |
[5] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[6] | 卢丽兰, 王玉萍, 尹欣幸, 黄英凯, 范海阔. 海南省水果型椰子园土壤养分调查与评价[J]. 中国农学通报, 2022, 38(8): 72-80. |
[7] | 王丽娜, 杨瑛, 杜苏. 生物炭施入对盐碱土壤影响的研究现状[J]. 中国农学通报, 2022, 38(8): 81-87. |
[8] | 赵双梅, 刘宪斌, 李红梅, 董文彩, 沈健萍, 包金美, 梁芳, 鲁美. 云南哀牢山湿性常绿阔叶林土壤碳分布特征[J]. 中国农学通报, 2022, 38(8): 88-95. |
[9] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[10] | 张梦佳, 文方芳, 张雪莲, 赵青春, 郭建明, 廖洪, 刘自飞, 朱文, 韩宝, 葛瑶科, 廖上强, 卢静. 田块尺度设施菜田土壤健康评价方法的初步构建与应用[J]. 中国农学通报, 2022, 38(7): 74-79. |
[11] | 陈慧, 周晓月, 谭诚, 张永春, 汪吉东, 马洪波. 紫云英还田对土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(7): 80-85. |
[12] | 李祥, 王永平, 王耀凤, 褚春年, 孙喜军, 柯希恒, 曾桥. 枝条有机肥最佳堆肥参数及施用效果研究[J]. 中国农学通报, 2022, 38(6): 63-68. |
[13] | 鲍广灵, 陶荣浩, 杨庆波, 胡含秀, 李丁, 马友华. 微生物修复农田土壤重金属污染技术研究进展[J]. 中国农学通报, 2022, 38(6): 69-74. |
[14] | 孙养存, 尹紫良, 葛菁萍. 土壤中重金属污染物的来源及治理方式[J]. 中国农学通报, 2022, 38(6): 75-79. |
[15] | 张洪芬, 杨丽杰, 赵玉娟, 张峰. 陇东2020年“强凉夏”气候特征及对农业影响分析[J]. 中国农学通报, 2022, 38(5): 117-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||