中国农学通报 ›› 2022, Vol. 38 ›› Issue (30): 77-84.doi: 10.11924/j.issn.1000-6850.casb2021-1058
收稿日期:
2021-11-04
修回日期:
2022-01-03
出版日期:
2022-10-25
发布日期:
2022-10-27
通讯作者:
乔月静
作者简介:
刘琪,女,1996年出生,山西朔州人,博士在读,研究方向:旱作栽培及作物生理。通信地址:030801 山西省晋中市太谷区铭贤南路1号 山西农业大学太谷校区,E-mail: 基金资助:
LIU Qi(), GAO Zhiqiang, YANG Zhenping, QIAO Yuejing()
Received:
2021-11-04
Revised:
2022-01-03
Online:
2022-10-25
Published:
2022-10-27
Contact:
QIAO Yuejing
摘要:
通过对黄土高原地区冬小麦在不同施氮水平下土壤细菌群落多样性和理化性质的研究,揭示不同施氮量下土壤细菌群落结构的变化规律,为科学施肥以及土壤生态系统的可持续提供依据。本试验处理为5个不同施氮(N)量0 (N0)、90 (N6)、180 (N12)、240 (N16)、300 (N20) kg/hm2,N0处理为对照,采用高通量测序技术,研究不同施氮量对小麦耕层土壤细菌群落结构及理化性质的影响。结果表明:增施氮肥显著增加了土壤水稳性团聚体平均重量直径(MWD) (P<0.05)。随着施氮量的增加,土壤酶活性先升高后下降,在N12处理下土壤酶活性均最高。施氮量对土壤细菌多样性指数有显著影响。不同施氮量处理中土壤细菌16S rRNA基因拷贝数为6.47×1010~15.18×1010,在N12处理达到最大值。在门水平上,15个样品获得的类群中变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)和芽单胞菌门(Gemmatimonadetes)为优势类群,其中N12处理显著提高变形菌门、硝化螺旋菌门的相对丰度,且N12处理的酸杆菌门相对丰度最低。主成分分析结果表明N12处理与其他处理距离较远。冗余分析表明,土壤理化性质及土壤酶与细菌群落密切相关。因此,施氮量显著影响土壤细菌群落结构及理化性质,施氮量(N)为180 kg/hm2时有利于提高细菌群落多样性及改善土壤结构。
中图分类号:
刘琪, 高志强, 杨珍平, 乔月静. 合理氮肥用量改善冬小麦土壤耕层细菌群落结构及理化性质研究[J]. 中国农学通报, 2022, 38(30): 77-84.
LIU Qi, GAO Zhiqiang, YANG Zhenping, QIAO Yuejing. Rational Nitrogen Fertilizer Application Rates Improving the Bacterial Community Structure and Physicochemical Properties of Winter Wheat Tillage Soil[J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 77-84.
处理 | pH | 全氮/ (g/kg) | 容重/ (g/cm3) | 土壤重量含水率/ % | 平均重量直径/ mm | 蔗糖酶活性/ [mg/(g·24 h)] | 脲酶活性/ [mg/(g·24 h)] | 磷酸酶活性/ [mg/(g·24 h)] |
---|---|---|---|---|---|---|---|---|
N0 | 8.00 a | 1.36 a | 1.54 a | 10.75 c | 1.36 c | 13.47 c | 0.59 c | 1.74 ab |
N6 | 7.98 a | 1.36 a | 1.49 b | 11.74 b | 1.17 cd | 16.84 b | 0.57 c | 1.59 b |
N12 | 7.98 a | 1.40 a | 1.40 c | 12.52 a | 2.46 a | 18.24 ab | 0.87 a | 1.94 a |
N16 | 7.94 b | 1.46 a | 1.39 c | 12.37 a | 1.87 b | 19.42 a | 0.86 a | 1.79 ab |
N20 | 7.92 b | 1.35 a | 1.39 c | 12.29 a | 0.86 d | 12.77 c | 0.72 b | 1.71 ab |
处理 | pH | 全氮/ (g/kg) | 容重/ (g/cm3) | 土壤重量含水率/ % | 平均重量直径/ mm | 蔗糖酶活性/ [mg/(g·24 h)] | 脲酶活性/ [mg/(g·24 h)] | 磷酸酶活性/ [mg/(g·24 h)] |
---|---|---|---|---|---|---|---|---|
N0 | 8.00 a | 1.36 a | 1.54 a | 10.75 c | 1.36 c | 13.47 c | 0.59 c | 1.74 ab |
N6 | 7.98 a | 1.36 a | 1.49 b | 11.74 b | 1.17 cd | 16.84 b | 0.57 c | 1.59 b |
N12 | 7.98 a | 1.40 a | 1.40 c | 12.52 a | 2.46 a | 18.24 ab | 0.87 a | 1.94 a |
N16 | 7.94 b | 1.46 a | 1.39 c | 12.37 a | 1.87 b | 19.42 a | 0.86 a | 1.79 ab |
N20 | 7.92 b | 1.35 a | 1.39 c | 12.29 a | 0.86 d | 12.77 c | 0.72 b | 1.71 ab |
处理 | 序列数 | Chao1指数 | ACE指数 | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
N0 | 40061a | 2335.12b | 2521.09b | 10.26c | 0.99845a |
N6 | 28861b | 2560.50b | 2751.35b | 10.30c | 0.99850a |
N12 | 34362ab | 3229.18a | 3316.93a | 10.41a | 0.99863a |
N16 | 32653ab | 3052.21a | 3286.77a | 10.36b | 0.99826a |
N20 | 32019ab | 2802.14b | 2872.81b | 10.36b | 0.99847a |
处理 | 序列数 | Chao1指数 | ACE指数 | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
N0 | 40061a | 2335.12b | 2521.09b | 10.26c | 0.99845a |
N6 | 28861b | 2560.50b | 2751.35b | 10.30c | 0.99850a |
N12 | 34362ab | 3229.18a | 3316.93a | 10.41a | 0.99863a |
N16 | 32653ab | 3052.21a | 3286.77a | 10.36b | 0.99826a |
N20 | 32019ab | 2802.14b | 2872.81b | 10.36b | 0.99847a |
[32] |
ZHOU J, JIANG X, WEI D, et al. Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China[J]. Scientific reports, 2017, 7(1):3267.
doi: 10.1038/s41598-017-03539-6 pmid: 28607352 |
[33] | YANG Y, CHENG H, GAO H, et al. Response and driving factors of soil microbial diversity related to global nitrogen addition[J]. Land degradation ang development, 2020, 31(2):190-204. |
[34] |
BOBBINK R, HICKS K, GALLOWAY J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis[J]. Ecological applications, 2010, 20(1):30-59.
doi: 10.1890/08-1140.1 URL |
[35] |
PHILIPPOT L, SPOR A, HÉNAULT C, et al. Loss in microbial diversity affects nitrogen cycling in soil[J]. The isme journal, 2013, 7(8):1609-1619.
doi: 10.1038/ismej.2013.34 URL |
[36] |
CHAER G, FERNANDES M, MYROLD D, et al. Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils[J]. Microbial ecology, 2009, 58(2):414-424.
doi: 10.1007/s00248-009-9508-x pmid: 19330551 |
[37] |
FIERER N, BRADFORD M A, JaCKSON R B. Toward an ecologial classification of soil bacteria[J]. Ecology, 2007, 88(6):1354-1364.
doi: 10.1890/05-1839 URL |
[38] |
SMIT E, LEEFLANG P, GOMMANS S, et al. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods[J]. Appl environ microbiol. 2001, 67:2284-2291.
doi: 10.1128/AEM.67.5.2284-2291.2001 URL |
[39] |
MCCAIG A E, GLOVER L A, PROSSER J I. Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns[J]. Appl environ microbiol. 2001, 67:4554-4559.
doi: 10.1128/AEM.67.10.4554-4559.2001 URL |
[40] |
WATSON S W, BOCK E, VALOIS F W, et al. Nitrospira marina, gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium[J]. Archives of microbiology, 1986, 144(1):1-7.
doi: 10.1007/BF00454947 URL |
[41] |
BECRAFT E D, WOYKE T, JARETT J, et al. Rokubacteria: genomic giants among the uncultured bacterial phyla[J]. Frontiers in microbiology, 2017, 8:2264.
doi: 10.3389/fmicb.2017.02264 pmid: 29234309 |
[1] |
BELL T, NEWMAN J A, SILVERMAN B W, et al. The contribution of species richness and composition to bacterial services[J]. Nature (London), 2005, 436(7054):1157-1160.
doi: 10.1038/nature03891 URL |
[2] |
FALKOWSKI P G, FENCHEL T, DELONG E F. The microbial engines that drive earth’s biogeochemical cycles[J]. Science, 2008, 320(5879):1034-1039.
doi: 10.1126/science.1153213 URL |
[3] | 吴娜, 刘吉利, 鲁文. 马铃薯/燕麦间作对根际土壤微生物数量的影响[J]. 西北农业学报, 2015, 24(5):163-167. |
[4] | 赵护兵, 王朝辉, 高亚军, 等. 陕西省农户小麦施肥调研评价[J]. 植物营养与肥料学报, 2016, 22(1):245-253. |
[5] |
MENDES R, GARBEVA P, RAAIJMAKERS J M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS microbiology reviews, 2013, 37(5):634-663.
doi: 10.1111/1574-6976.12028 pmid: 23790204 |
[6] | ABBOTT L K, MURPHY D V. Soil biological fertility[M]. Springer:Netherlands, 2007:1-15. |
[7] | 宋亚娜, 林艳, 陈子强. 氮肥水平对稻田细菌群落及N2O排放的影响[J]. 中国生态农业学报, 2017, 25(9):1266-1275. |
[8] | 包明, 何红霞, 马小龙, 等. 化学氮肥与绿肥对麦田土壤细菌多样性和功能的影响[J]. 土壤学报, 2018, 55(3):211-220. |
[9] |
RAMIREZ K S, CRAINE J M, FIERER N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J]. Global change biology, 2012, 18(6):1918-1927.
doi: 10.1111/j.1365-2486.2012.02639.x URL |
[10] |
MA H K, BAI G Y, SUN Y, et al. Opposing effects of nitrogen and water addition on soil bacterial and fungal communities in the Inner Mongolia steppe: a field experiment[J]. Applied soil ecology, 2016, 108:128-135.
doi: 10.1016/j.apsoil.2016.08.008 URL |
[11] | 付智丹, 周丽, 陈平, 等. 施氮量对玉米/大豆套作系统土壤微生物数量及土壤酶活性的影响[J]. 中国生态农业学报, 2017, 25(10):1463-1474. |
[12] | 袁红朝, 秦红灵, 刘守龙, 等. 长期施肥对红壤性水稻土细菌群落结构和数量的影响[J]. 中国农业科学, 2011, 44(22):4610-4617. |
[13] | 邢旭明, 王红梅, 安婷婷, 等. 长期施肥对棕壤团聚体组成及其主要养分赋存的影响[J]. 水土保持学报, 2015, 29(2):267-273. |
[14] |
ZENG Q C, DONG Y H, AN S S. Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau, China[J]. Plos one, 2016, 11(4):e0152894.
doi: 10.1371/journal.pone.0152894 URL |
[15] |
LIU D, YANG Y, AN S.S, et al. The biogeographical distribution of soil bacterial communities in the Loess Plateau as revealed by high-throughput sequencing[J]. Frontiers in microbiology, 2018, 9:2456.
doi: 10.3389/fmicb.2018.02456 pmid: 30405547 |
[16] | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社,1986. |
[17] | 李慧, 代新俊, 高志强. 夏闲期耕作对黄土高原旱地麦田土壤水稳性团聚体稳定性的影响[J]. 中国农业科学, 2018, 51(13):2524-2534. |
[18] | 李慧. 夏闲期耕作对旱地麦田土壤质量的影响[D]. 太原: 山西农业大学, 2018. |
[19] |
CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat methods, 2010, 7:335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131 |
[20] |
EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19):2460-2461.
doi: 10.1093/bioinformatics/btq461 pmid: 20709691 |
[21] | 杨亚东, 王志敏, 曾昭海. 长期施肥和灌溉对土壤细菌数量多样性和群落结构的影响[J]. 中国农业科学, 2018, 51(2):290-301. |
[22] | 罗培宇, 樊耀, 杨劲峰, 等. 长期施肥对棕壤氨氧化细菌和古菌丰度的影响[J]. 植物营养与肥料学报, 2017, 23(3):678-685. |
[23] |
ZHANG Y T, SHEN H, HE X H, et al. Fertilization shapes bacterial community structure by alteration of soil pH[J]. Frontiers in microbiology, 2017, 8:1325.
doi: 10.3389/fmicb.2017.01325 pmid: 28769896 |
[24] |
HARTMANN M, FREY B, MAYER J, et al. Distinct soil microbial diversity under long-term organic and conventional farming[J]. The isme journal, 2015, 9:1177-1194.
doi: 10.1038/ismej.2014.210 URL |
[25] |
SUN R B, ZHANG X X, GUO X S, et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Soil biology and biochemistry, 2015, 88:9-18.
doi: 10.1016/j.soilbio.2015.05.007 URL |
[26] |
FRANCIOLI D, SCHULZ E, LENTENDU G, et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies[J]. Frontiers in microbiology, 2016, 7:1446.
doi: 10.3389/fmicb.2016.01446 pmid: 27683576 |
[27] | 李荣, 侯贤清, 吴鹏年, 等. 秸秆还田配施氮肥对土壤性状与水分利用效率的影响[J]. 农业机械学报, 2019, 50(8):289-298. |
[28] |
CHEN J, ARAFAT Y, WU L K, et al. Shifts in soil microbial community, soil enzymes and crop yield underpeanut/maize intercropping with reduced nitrogen levels[J]. Applied soil ecology, 2018, 124:327-334.
doi: 10.1016/j.apsoil.2017.11.010 URL |
[29] |
MARKLEIN A R, HOULTON B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems[J]. New phytologist, 2012, 193(3):696-704.
doi: 10.1111/j.1469-8137.2011.03967.x pmid: 22122515 |
[30] |
LEIRóSa M C, TRASAR-CEPEDA C, SEOANEA S, et al. Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in an area of the European temperate humid zone (Galicia, NW Spain): general parameter[J]. Soil biology and biochemistry, 2000, 32(6):733-745.
doi: 10.1016/S0038-0717(99)00195-9 URL |
[31] |
WANG J, BAO J T, SU J Q, et al. Impact of inorganic nitrogen additions on microbes in biological soil crusts[J]. Soil biology and biochemistry, 2015, 88:303-313.
doi: 10.1016/j.soilbio.2015.06.004 URL |
[1] | 周冬冬, 张军, 葛梦婕, 刘忠红, 朱晓欢, 李春燕. 不同氮肥处理对稻茬晚播小麦‘淮麦36’产量、氮素利用率和品质的影响[J]. 中国农学通报, 2023, 39(1): 1-7. |
[2] | 崔莹莹, 周波, 陈义勇, 刘嘉裕, 黎健龙, 唐颢, 唐劲驰. 广东茶区土壤肥力时空变化分析与综合评价[J]. 中国农学通报, 2023, 39(1): 85-95. |
[3] | 王福玉, 陈贵菊, 孙雷明, 黄玲, 邵敏敏, 赵凯, 杨本洲, 张玉丹, 闫璐, 王霖. 耕作方式与施氮量互作对小麦生长、产量与品质的影响[J]. 中国农学通报, 2022, 38(9): 20-26. |
[4] | 曾婕, 余浪, 达布希拉图, 李云驹. 磷基土壤调理剂在低磷红壤上对小白菜生长的影响[J]. 中国农学通报, 2022, 38(9): 81-87. |
[5] | 孙树晴, 丁炜, 孙瑞, 张希财, 兰国玉, 陈伟, 杨川, 吴志祥. 不同林龄橡胶林土壤细菌群落组成及多样性研究[J]. 中国农学通报, 2022, 38(9): 93-100. |
[6] | 黄浩, 谢晋, 袁文彬, 王初亮, 陈坤华, 曾繁东, 梁增发, 苏诏, 王维. 不同有机物料对烤烟根系特征及氮磷钾积累量的影响[J]. 中国农学通报, 2022, 38(8): 51-57. |
[7] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[8] | 武志斌, 黄超, 雷媛, 敬峰, 刘战东. 不同产量水平下冬小麦水肥利用特性研究[J]. 中国农学通报, 2022, 38(8): 64-71. |
[9] | 卢丽兰, 王玉萍, 尹欣幸, 黄英凯, 范海阔. 海南省水果型椰子园土壤养分调查与评价[J]. 中国农学通报, 2022, 38(8): 72-80. |
[10] | 王丽娜, 杨瑛, 杜苏. 生物炭施入对盐碱土壤影响的研究现状[J]. 中国农学通报, 2022, 38(8): 81-87. |
[11] | 赵双梅, 刘宪斌, 李红梅, 董文彩, 沈健萍, 包金美, 梁芳, 鲁美. 云南哀牢山湿性常绿阔叶林土壤碳分布特征[J]. 中国农学通报, 2022, 38(8): 88-95. |
[12] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[13] | 张梦佳, 文方芳, 张雪莲, 赵青春, 郭建明, 廖洪, 刘自飞, 朱文, 韩宝, 葛瑶科, 廖上强, 卢静. 田块尺度设施菜田土壤健康评价方法的初步构建与应用[J]. 中国农学通报, 2022, 38(7): 74-79. |
[14] | 陈慧, 周晓月, 谭诚, 张永春, 汪吉东, 马洪波. 紫云英还田对土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(7): 80-85. |
[15] | 鲍广灵, 陶荣浩, 杨庆波, 胡含秀, 李丁, 马友华. 微生物修复农田土壤重金属污染技术研究进展[J]. 中国农学通报, 2022, 38(6): 69-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||