[1] |
刘秀英,熊建利,臧卓,等.基于植被指数的马尾松叶绿素含量估算模型[J].西北林学院学报,2012,27(3):7-44,61.
|
[2] |
刘芬,屈成,肖楠,等.水稻高光谱变化特征与叶绿素含量监测研究[J].激光生物学报,2017,26(4):326-333.
|
[3] |
潘静,韩蕾.葡萄叶片叶绿素含量测定方法比较[J].西北园艺(综合),2017,11(6):58-60.
|
[4] |
刘夏菁.基于高光谱数据的冬小麦叶绿素含量估算模型[D].石家庄:河北师范大学,2017.
|
[5] |
梁爽,赵庚星,朱西存.苹果树叶片叶绿素含量高光谱估测模型研究[J].光谱学与光谱分析,2012,32(5):1367-1370.
|
[6] |
李映雪,金林雪,徐德福,等.小麦叶片水分及绿度特征的高光谱反演[C].第28届中国气象学会年会,中国福建厦门,2011.
|
[7] |
Hinzman L D,Bauer M E,Daughtry C S T.Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat[J].Remote Sensing of Environment,1986,19(1):47-61.
doi: 10.1016/0034-4257(86)90040-4
URL
|
[8] |
Bannari A,Khurshid K S,Staenz K,et al.A Comparison of Hyperspectral Chlorophyll Indices for Wheat Crop Chlorophyll Content Estimation Using Laboratory Reflectance Measurements[J].IEEE Transactions on Geoscience & Remote Sensing,2007,45(10):3063-3074.
|
[9] |
郑涛,刘宁,孙红,等.基于高光谱成像的马铃薯叶片叶绿素分布可视化研究[J].农业机械学报,2017,48(S1):153-159.
|
[10] |
石吉勇,李文亭,郭志明,等.基于叶面叶绿素分布特征的黄瓜叶片氮钾元素亏缺诊断[J].农业机械学报,2019,50(8):264-269.
|
[11] |
肖武,陈佳乐,赵艳玲,等.利用无人机遥感反演高潜水位矿区沉陷地玉米叶绿素含量[J].煤炭学报,2019,44(1):295-306.
|
[12] |
常潇月,常庆瑞,王晓凡,等.基于无人机高光谱影像玉米叶绿素含量估算[J].干旱地区农业研究,2019,37(1):66-73.
|
[13] |
尼加提·卡斯木,师庆东,王敬哲,等.基于高光谱特征和偏最小二乘法的春小麦叶绿素含量估算[J].农业工程学报,2017,33(22):208-216.
|
[14] |
解飞,齐雁冰,常庆瑞.关中地区夏玉米抽穗期叶绿素含量的高光谱估算[J].水土保持通报,2016,36(2):176-180.
|
[15] |
张玮,王鑫梅,潘庆梅,等.干旱胁迫下雷竹叶片叶绿素的高光谱响应特征及含量估算[J].生态学报,2018,38(18):6677-6684.
|
[16] |
Gitelson A A,Peng Y,VIñA A,et al.Efficiency of chlorophyll in gross primary productivity:A proof of concept and application in crops[J].Journal of Plant Physiology,2016,201:101-110.
doi: S0176-1617(16)30098-0
pmid: 27374843
|
[17] |
Alberte R S,Naylor A W.The role of cytokinins in chloroplast lamellar development[J].Plant Physiology,1975,55(6):1079-1081.
pmid: 16659214
|
[18] |
Knipling E B.Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation[J].Remote Sensing of Environmen,1970,1:155-159.
doi: 10.1016/S0034-4257(70)80021-9
URL
|