| [1] | CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual review of plant biology, 2016, 67:489-512.  doi: 10.1146/annurev-arplant-043015-112301    
																																																	pmid: 27128467
 | 
																													
																						| [2] | 孙福金. 重金属“镉”对动植物、人体的危害及应对措施[J]. 现代农业, 2012(5):162-163. | 
																													
																						| [3] | SHAHID M A, BALAL R M, KHAN N, et al. Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism[J]. Eco-toxicology and environmental safety, 2019(180):588-599. | 
																													
																						| [4] | MOAN S, NEGI N P, CHAUHAN A S. Heat shock proteins (HSPs)-a molecular chaperone for plant protection[J]. Plant cell biotechnology and molecular biology, 2020, 21(17-18):119-129. | 
																													
																						| [5] | KOTAK S, LARKINDALE J, LEE U, et al. Complexity of the heat stress response in plants[J]. Current opinion in plant biology, 2007, 10(3):310-316.  doi: 10.1016/j.pbi.2007.04.011    
																																																	pmid: 17482504
 | 
																													
																						| [6] | GUPTA S C, SHARMA A, MISHRA M, et al. Heat shock proteins in toxicology: how close and how far?[J]. Life ences, 2010, 86(11-12):377-384. | 
																													
																						| [7] | MURAKAMI T, MATSUBA S, FUNATSUKI H, et al. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UVB resistance to rice plants[J]. Molecular breeding, 2004, 13(2):165-175. | 
																													
																						| [8] | SATO Y, YOKOYA S. Enhanced tolerance to drought stress in transgenic rice plants over expressing a small heat-shock protein, sHSP17.7[J]. Plant cell reports, 2008, 27(2):329-334. | 
																													
																						| [9] | WEHMEYER N, VIERLING E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance[J]. Plant physiology, 2000, 122(4):1099-1108.  pmid: 10759505
 | 
																													
																						| [10] | KIM B M, RHEE J S, JEONG C B, et al. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the inter tidal cope pod Tigriopus japonicus[J]. Comparative biochemistry & physiology toxicology & pharmacology cbp, 2014, 166:65-74. | 
																													
																						| [11] | 曾卫军, 原慧, 覃建兵. AtsHsp17.6-CⅠ和AtsHsp17.6-CⅡ基因对非生物胁迫的应答研究[J]. 植物研究, 2012, 32(6):744-749.  doi: 10.7525/j.issn.1673-5102.2012.06.019
 | 
																													
																						| [12] | YAZDI M E T, AMIRI M S, NOURBAKHSH F, et al. Bio-indicators in cadmium toxicity: role of HSP27 and HSP70[J]. Environmental science and pollution research, 2021, 28(21):26359-26379. | 
																													
																						| [13] | 张琼, 王锦霞, 孟诗琪, 等. 甜菜热激蛋白基因BvHSP18.2的克隆和生物信息学分析[J]. 中国农学通报, 2022, 38(27):111-118.  doi: 10.11924/j.issn.1000-6850.casb2022-0222
 | 
																													
																						| [14] | 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2015. | 
																													
																						| [15] | 赵建诚. 欧美杨Ⅰ-107根系特征及盐、旱胁迫对其生理特性的影响[D]. 泰安: 山东农业大学, 2014. | 
																													
																						| [16] | 门淑珍, 李桂忱, 温馨雨. 植物热激蛋白功能及表达调控的研究进展[J]. 聊城大学学报(自然科学版), 2024, 37(3):69-79. | 
																													
																						| [17] | LEE K W, CHA J Y, KIM K H, et al. Over expression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress[J]. Biotechnology letters, 2012, 34:167-174. | 
																													
																						| [18] | CUI Y, XU G, WANG M, et al. Expression of OsMSR3 in Arabidopsis enhances tolerance to cadmium stress[J]. Plant cell tissue organ cult, 2012, 113(2):331-340. | 
																													
																						| [19] | 赵慧博, 李丽丽, 梁塔娜, 等. 重金属铜、镉胁迫下植物响应的研究进展[J]. 安徽农业科学, 2019, 47(21):14-16. | 
																													
																						| [20] | MURATA N. Molecular mechanism and genetic engineering of stress tolerance in plants[J]. Gamma field symposia, 2000(39):1-11. | 
																													
																						| [21] | WANG T, AMEE M, WANG G, et al. FaHSP17.8-CII orchestrates lead tolerance and accumulation in shoots via enhancing antioxidant enzymatic response and PSII activity in tall rescue[J]. Eco-toxicology and environmental safety, 2021, 223:112568. | 
																													
																						| [22] | BONDINO H G, VALLE E M, TENHAVE A. Evolution and functional diversification of the small heat shock protein/α-crystallin family in higher plants[J]. Planta, 2012, 235:1299-1313.  doi: 10.1007/s00425-011-1575-9    
																																																	pmid: 22210597
 | 
																													
																						| [23] | SALAM A, YETISIN F, DEMIRALAY M, et al. Copper stress and responses in plants[J]. Plant metal interaction, 2022, 23(21):12950-12950. | 
																													
																						| [24] | ZABALZA A, LOLI GÁLVEZ, MARINO D, et al. The application of ascorbate or its immediate precursor, galactono-1,4-lactone, does not affect the response of nitrogen-fixing pea nodules to water stress[J]. Journal of plant physiology, 2008, 165(8):805-812.  doi: 10.1016/j.jplph.2007.08.005    
																																																	pmid: 17931744
 | 
																													
																						| [25] | CUI Y, WANG M, YIN X, et al. OsMSR3, a small heat shock protein, confers enhanced tolerance to copper stress in Arabidopsis thaliana[J]. International journal of molecular sciences, 2019, 20(23):1-14. | 
																													
																						| [26] | SEWELAM N, KAZAN K, MEIKE HÜDI G, et al. The AtHSP17.4C1 gene expression is mediated by diverse signals that link biotic and abiotic stress factors with ros and can be a useful molecular marker for oxidative stress[J]. International journal of molecular sciences, 2019, 20(13):3201-3218. | 
																													
																						| [27] | 魏婧, 徐畅, 李可欣, 等. 超氧化物歧化酶的研究进展与植物抗逆性[J]. 植物生理学报, 2020, 56(12):2571-2584. | 
																													
																						| [28] | 李玉杰, 刘少康, 周涛, 等. 盐胁迫对芝麻萌发过程中活性成分、抗氧化性及抗氧化酶活性的影响[J]. 食品工业科技, 2024, 45(19):76-83. | 
																													
																						| [29] | 万子栋, 高天鹏, 周玉霞, 等. 重金属复合胁迫下碱蓬萌发生长及富集特征[J]. 生物工程学报, 2020, 36(3):493-507. | 
																													
																						| [30] | THOUNAOJAM T C, PANDA P, MAZUMDAR P, et al. Excess copper induced oxidative stress and response of antioxidants in rice[J]. Plant physiology and biochemistry, 2012, 53:33-39.  doi: 10.1016/j.plaphy.2012.01.006    
																																																	pmid: 22306354
 | 
																													
																						| [31] | 张晗芝. 镉胁迫下植物解毒机理研究进展[J]. 科技创新导报, 2015, 12(35):192-193. | 
																													
																						| [32] | 万永吉, 郑文教, 方煜, 等. 重金属铬(Ⅲ)胁迫对红树植物秋茄幼苗SOD、POD活性及其同工酶的影响[J]. 厦门大学学报(自然科学版), 2008(4):571-574. | 
																													
																						| [33] | HAQ N U, RAZA S, LUTHE D S, et al. A dual role for the chloroplast small heat shock protein of Chenopodium album including protection from both heat and metal stress[J]. Plant molecular biology reporter, 2013, 31(2):398-408. | 
																													
																						| [34] | 王迪华, 王改玲, 樊存虎. 镉胁迫对小白菜种子萌发、生理特性及其镉积累的影响[J]. 中国瓜菜, 2021, 34(9):80-83. | 
																													
																						| [35] | 肖莎莎, 曹霞, 贺成峰, 等. 镉胁迫对水稻抗氧化酶和营养品质的影响[J]. 延边大学农学学报, 2023, 45(4):26-31. |