欢迎访问《中国农学通报》,

中国农学通报 ›› 2025, Vol. 41 ›› Issue (24): 126-134.doi: 10.11924/j.issn.1000-6850.casb2025-0090

• 工程·机械·水利·装备 • 上一篇    下一篇

基于无人机遥感的作物氮素诊断研究进展

韩延禄1,2(), 朱毅1,2, 尹艺璐3, 王会征1,2, 兰玉彬1,2, 赵硕1,2()   

  1. 1 山东理工大学农业工程与食品科学学院,山东淄博 255000
    2 山东理工大学现代农业装备研究院,山东淄博 255000
    3 淄博市数字农业农村发展中心,山东淄博 255000
  • 收稿日期:2025-02-12 修回日期:2025-07-07 出版日期:2025-08-25 发布日期:2025-09-05
  • 通讯作者:
    赵硕,男,1994年出生,山东淄博人,讲师,博士,主要从事智慧农业技术与装备研究。通信地址:255000 山东省淄博市张店区新村西路266号,E-mail:
  • 作者简介:

    韩延禄,男,2002年出生,山东济南人,在读硕士,主要从事精准农业航空研究。通信地址:255000 山东省淄博市张店区新村西路266号,E-mail:

  • 基金资助:
    国家自然科学基金项目“基于胚乳线粒体功能启动的水-电场混合引发诱导胡萝卜种子萌发机理研究”(32402557); 宁夏回族自治区重点研发计划项目“宁夏露地冷凉蔬菜智能化生产管理关键技术研究与联控装备集成示范”(2025BBF01004); 山东省自然科学基金项目“水-电场混合引发技术促进胡萝卜种子萌发的胚乳弱化作用机理研究”(ZR2023QC213)

Advances in Crop Nitrogen Diagnosis Based on UAV Remote Sensing

HAN Yanlu1,2(), ZHU Yi1,2, YIN Yilu3, WANG Huizheng1,2, LAN Yubin1,2, ZHAO Shuo1,2()   

  1. 1 College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000
    2 Institute of Modern Agricultural Equipment, Shandong University of Technology, Zibo, Shandong 255000
    3 Zibo Digital Agriculture and Rural Development Center, Zibo, Shandong 255000
  • Received:2025-02-12 Revised:2025-07-07 Published:2025-08-25 Online:2025-09-05

摘要:

本文聚焦无人机遥感在作物氮素诊断中的应用,全面梳理了氮素诊断技术从传统的氮素诊断技术、基于数字图像分析的诊断技术到无人机遥感的诊断技术的发展脉络。深入剖析了无人机遥感技术在多种作物氮素诊断中的研究和应用进展,指出该技术在精准农业中所展现的机动性强、自动化程度高、无损高效等优势,同时,客观剖析了该技术当前面临的挑战,如海量数据处理、模型泛化能力受限、应用成本高昂、易受环境干扰等。最后,对其未来在深化机理与创新模型、突破核心技术瓶颈、构建智能化应用生态、推进标准化与规模化等方向进行展望,旨为推动无人机遥感技术在精准农业领域的深入应用提供理论支撑。

关键词: 无人机遥感, 氮素诊断, 数字图像分析, 精准农业, 无损高效, 数据融合

Abstract:

This paper focuses on the application of UAV remote sensing in crop nitrogen diagnosis, and comprehensively summarizes the development of nitrogen diagnosis technology from traditional nitrogen diagnosis technology, diagnosis technology based on digital image analysis to diagnosis technology of UAV remote sensing. The research and application progress of UAV remote sensing technology in nitrogen diagnosis of various crops are deeply analyzed. It is pointed out that the technology has the advantages of strong mobility, high degree of automation, non-destructive and high efficiency in precision agriculture. At the same time, the current challenges of the technology are objectively analyzed, such as massive data processing, limited model generalization ability, high application cost, and vulnerability to environmental interference. Finally, the future directions of deepening the mechanism and innovation model, breaking through the bottleneck of core technology, building intelligent application ecology, and promoting standardization and scale are prospected, aiming to provide theoretical support for promoting the in-depth application of UAV remote sensing technology in the field of precision agriculture.

Key words: UAV remote sensing, nitrogen diagnosis, digital image analysis, precision agriculture, non-destructive and efficient, data fusion