欢迎访问《中国农学通报》,

中国农学通报 ›› 2025, Vol. 41 ›› Issue (35): 46-54.doi: 10.11924/j.issn.1000-6850.casb2025-0322

• 资源·环境·生态·土壤·气象 • 上一篇    下一篇

植物耐盐机理及生物修复策略

单晓宇(), 吕宗勇, 张杰, 王晓菡, 孟光范()   

  1. 齐鲁工业大学(山东省科学院)绿色造纸与资源循环全国重点实验室,济南 250353
  • 收稿日期:2025-04-22 修回日期:2025-10-22 出版日期:2025-12-11 发布日期:2025-12-11
  • 通讯作者:
    孟光范,男,1982年出生,山东泰安人,副教授,博士,研究方向:功能性微生物等。通信地址:250353 山东省济南市长清区齐鲁工业大学生物工程学部,E-mail:
  • 作者简介:

    单晓宇,女,2001年出生,山东潍坊人,硕士研究生,研究方向:农业微生物在盐碱地中的应用。通信地址:250353 山东省济南市长清区齐鲁工业大学生物工程学部,E-mail:

  • 基金资助:
    中央引导地方科技发展专项资金“喀什地区蔬菜抑病促生育苗基质开发及产业化应用”(YDZX2023006); “新疆自治区牛羊肉及乳制品质量安全保障与风险评估技术研究与示范”(YDZX2024015)

Salt-tolerant Mechanisms and Bioremediation Strategy of Plants

SHAN Xiaoyu(), LYU Zongyong, ZHANG Jie, WANG Xiaohan, MENG Guangfan()   

  1. State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353
  • Received:2025-04-22 Revised:2025-10-22 Published:2025-12-11 Online:2025-12-11

摘要:

全球粮食安全正面临日益严峻的耕地盐渍化威胁,开发可持续治理方案迫在眉睫。盐胁迫通过诱导渗透失衡、离子毒性及氧化损伤等机制抑制作物生长,传统物理与化学修复技术虽短期有效,但易引发二次污染且成本高昂,而生物修复技术凭借其环境友好性与可持续性成为研究热点。本文系统综述了盐胁迫下植物-微生物互作机制的研究进展:首先解析盐胁迫对植物生理代谢(光合、养分吸收、抗氧化系统)及土壤微生态(微生物多样性、养分转化)的负面影响;其次,从有机渗透调节物质积累、激素代谢协同、光合途径优化、抗氧化酶激活及抗逆基因调控等方面,阐明植物自身耐盐的内在分子机制;重点评述根际促生菌(如芽孢杆菌属、假单胞菌属等)与内生真菌(如丛枝菌根真菌、木霉菌、印度梨形孢等)通过调节离子稳态、增强养分吸收、激活抗氧化防御及协同激素信号等多途径提升植物耐盐性的作用机制,并归纳不同微生物类群的功能差异与应用潜力;最后指出当前研究中微生物-植物适配规律不明、复合菌剂田间稳定性不足等关键问题,提出未来应整合多组学与合成生物技术,深化微生物-植物-环境互作网络解析,构建标准化生物修复技术体系,为盐渍化耕地治理与边际土地资源开发提供理论支撑与技术参考。

关键词: 盐渍化, 根际促生菌, 内生真菌, 植物-微生物互作, 生物修复

Abstract:

Global food security is facing the growing threat of cropland salinization, urgently calling for the development of sustainable remediation solutions. Salt stress inhibits crop growth by inducing osmotic imbalance, ion toxicity, and oxidative damage. Although traditional physical and chemical remediation techniques are effective in the short term, they often lead to secondary pollution and high operational costs. In this context, bioremediation has emerged as a promising and environmentally sustainable alternative. This study systematically reviews recent advances in the mechanisms of plant-microbe interactions under salt stress. It firstly analyzes the impacts of salt stress on plants; then, it elucidates the intrinsic mechanisms of plant salt tolerance, including the synthesis of organic osmolytes, the regulation of hormone metabolism and photosynthetic pathways, and the activation of antioxidant enzymes and stress-responsive genes. It then focuses on rhizosphere-associated plant growth-promoting rhizobacteria (e.g., Bacillus, Pseudomonas) and endophytic fungi (e.g., arbuscular mycorrhizal fungi, Trichoderma), which enhance plant salt tolerance through multiple mechanisms such as maintaining ion homeostasis, improving nutrient uptake, activating antioxidant defense systems, and coordinating hormonal signaling. Finally, we emphasize the importance of integrating multi-omics approaches with synthetic biology technologies to elucidate the interactions among microorganisms, plants, and the environment, thereby facilitating the sustainable remediation of saline soils and the utilization of marginal lands.

Key words: salinization, plant growth promoting rhizobacteria, endophytic fungi, plant-microbe interactions, bioremediation