[1] Zhang, Y.H., M.F. Liu, J.B. He, Y.F. Wang, G.N. Xing, Y. Li, S.P. Yang, T.J. Zhao, J.Y. Gai. Marker-assisted breeding for transgressive seed protein content in soybean [Glycine max (L.) Merr.][J]. Theoretical and Applied Genetics, 2015, 128(6): 1061-1072. [2] Dudley, J.W. Molecular Markers in Plant Improvement: Manipulation of Genes Affecting Quantitative Traits[J]. Crop Science, 1993, 33(4): 660-668. [3] Xu, Y.,J.H. Crouch. Marker-Assisted Selection in Plant Breeding: From Publications to Practice[J]. Crop Science, 2008, 48(2): 391-407. [4] Eathington, S., T.M. Crosbie, M. Edwards, R.S. Reiter, J. Bull. Molecular Markers in a Commercial Breeding Program[J]. Crop Science, 2007, 47: 155-163. [5] 邱丽娟, 王昌陵, 周国安, 陈受宜, 常汝镇. 大豆分子育种研究进展[J]. 中国农业科学, 2007, 40(11): 2418-2436. [6] Apuya, N.R., B.L. Frazier, P. Keim, E.J. Roth, K.G. Lark. Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L.) merrill[J]. Theoretical and Applied Genetics, 1988, 75(6): 889-901. [7] Keim, P.S., B.W. Diers, T.C. Olson, R.C. Shoemaker. RFLP mapping in soybean: association between marker loci and variation in quantitative traits[J]. Genetics, 1990, 126(3): 735-742. [8] Lark, K.G., J.M. Weisemann, B.F. Matthews, R. Palmer, K. Chase, T. Macalma. A genetic map of soybean (Glycine max L.) using an intraspecific cross of two cultivars: ‘Minosy’ and ‘Noir 1’[J]. Theoretical and Applied Genetics, 1993, 86(8): 901-906. [9] Shoemaker, R.C.,J.E. Specht. Integration of the soybean molecular and classical genetic linkage groups[J]. Crop Science, 1995, 35(2): 436-446. [10] Akkaya, M.S., R.C. Shoemaker, J.E. Specht, A.A. Bhagwat, P.B. Cregan. Integration of Simple Sequence Repeat DNA Markers into a Soybean Linkage Map[J]. Crop Science, 1995, 35(5): 1439-1445. [11] Cregan, P.B., T. Jarvik, A.L. Bush, R.C. Shoemaker, K.G. Lark, A. Kahler, N. Kaya, T.T. Vantoai, D.G. Lohnes, J. Chung. An Integrated Genetic Linkage Map of the Soybean Genome[J]. Crop Science, 1999, 39(5): 1464-1490. [12] Song, Q., L.F. Marek, R.C. Shoemaker, K.G. Lark, V.C. Concibido, X. Delannay, J.E. Specht, P.B. Cregan. A new integrated genetic linkage map of the soybean[J]. Theoretical and Applied Genetics, 2004, 109(1): 122-128. [13] Zhang, W., Y.J. Wang, G. Luo, J.S. Zhang, C. He, X. Wu, J. Gai, S.Y. Chen. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers[J]. Theoretical and Applied Genetics, 2004, 108(6): 1131-1139. [14] Choi, I., D.L. Hyten, L.K. Matukumalli, Q. Song, J.M. Chaky, C.V. Quigley, K. Chase, K.G. Lark, R.S. Reiter, M. Yoon. A Soybean Transcript Map: Gene Distribution, Haplotype and Single-Nucleotide Polymorphism Analysis[J]. Genetics, 2007, 176(1): 685-696. [15] Hyten, D.L., I. Choi, Q. Song, J.E. Specht, T.E. Carter, R.C. Shoemaker, E. Hwang, L.K. Matukumalli, P.B. Cregan. A High Density Integrated Genetic Linkage Map of Soybean and the Development of a 1536 Universal Soy Linkage Panel for Quantitative Trait Locus Mapping[J]. Crop Science, 2010, 50(3): 960-968. [16] Wang, X., G. Jiang, M. Green, R.A. Scott, Q. Song, D.L. Hyten, P.B. Cregan. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean[J]. Molecular Genetics and Genomics, 2014, 289(5): 935-949. [17] Schmutz, J., S.B. Cannon, J.A. Schlueter, J. Ma, T. Mitros, W. Nelson, D.L. Hyten, Q. Song, J.J. Thelen, J. Cheng. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183. [18] Woody, J.L., A.J. Severin, Y.T. Bolon, B. Joseph, B.W. Diers, A.D. Farmer, N.T. Weeks, G.J. Muehlbauer, R.T. Nelson, D. Grant. Gene expression patterns are correlated with genomic and genic structure in soybean[J]. Genome, 2011, 54(1): 10-18. [19] Upchurch, R.G.,M.E. Ramirez. Soybean Plastidal Omega-3 Fatty Acid Desaturase Genes GmFAD7 and GmFAD8: Structure and Expression[J]. Crop Science, 2011, 51(4): 1673-1682. [20] Anderson, J.E., M.B. Kantar, T.J.Y. Kono, F. Fu, A.O. Stec, Q. Song, P.B. Cregan, J.E. Specht, B.W. Diers, S.B. Cannon. A roadmap for functional structural variants in the soybean genome[J]. G3: Genes, Genomes, Genetics, 2014, 4(7): 1307-1318. [21] Cook, D.E., T.G. Lee, X. Guo, S. Melito, K. Wang, A.M. Bayless, J. Wang, T.J. Hughes, D.K. Willis, T.E. Clemente. Copy Number Variation of Multiple Genes at Rhg1 Mediates Nematode Resistance in Soybean[J]. Science, 2012, 338(6111): 1206-1209. [22] Tian, Z., X. Wang, R. Lee, Y. Li, J.E. Specht, R.L. Nelson, P.E. Mcclean, L. Qiu, J. Ma. Artificial selection for determinate growth habit in soybean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8563-8568. [23] Xia, Z., S. Watanabe, T. Yamada, Y. Tsubokura, H. Nakashima, H. Zhai, T. Anai, S. Sato, T. Yamazaki, S. Lu. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(32): 12852-12853. [24] Cook, D.E., A.M. Bayless, K. Wang, X. Guo, Q. Song, J. Jiang, A.F. Bent. Distinct Copy Number, Coding Sequence, and Locus Methylation Patterns Underlie Rhg1-Mediated Soybean Resistance to Soybean Cyst Nematode[J]. Plant Physiology, 2014, 165(2): 630-647. [25] Song, Q., J. Jenkins, G. Jia, D.L. Hyten, V.R. Pantalone, S.A. Jackson, J. Schmutz, P.B. Cregan. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01[J]. BMC Genomics, 2016, 17(1): 33. [26] Diers, B.W., P.S. Keim, W.R. Fehr, R.C. Shoemaker. RFLP analysis of soybean seed protein and oil content[J]. Theoretical and Applied Genetics, 1992, 83(5): 608-612. [27] Qiu, B.X., P.R. Arelli, D.A. Sleper. RFLP markers associated with soybean cyst nematode resistance and seed composition in a ‘Peking’בEssex’ population[J]. Theoretical and Applied Genetics, 1999, 98(3): 356-364. [28] Csanadi, G., J. Vollmann, G. Stift, T. Lelley. Seed quality QTLs identified in a molecular map of early maturing soybean[J]. Theoretical and Applied Genetics, 2001, 103(6): 912-919. [29] Zhang, W.-K., Y.-J. Wang, G.-Z. Luo, J.-S. Zhang, C.-Y. He, X.-L. Wu, J.-Y. Gai, S.-Y. Chen. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers[J]. Theoretical and Applied Genetics, 2004, 108(6): 1131-1139. [30] Yesudas, C.R., R. Bashir, M. Geisler, D.A. Lightfoot. Identification of germplasm with stacked QTL underlying seed traits in an inbred soybean population from cultivars Essex and Forrest[J]. Molecular Breeding, 2013, 31(3): 693-703. [31] Lestari, P., K. Van, J. Lee, Y.J. Kang, S. Lee. Gene divergence of homeologous regions associated with a major seed protein content QTL in soybean[J]. Frontiers in Plant Science, 2013, 4: 176-176. [32] Warrington, C.V., H. Abdelhaleem, D.L. Hyten, P.B. Cregan, J.H. Orf, A.S. Killam, N. Bajjalieh, Z. Li, H.R. Boerma. QTL for seed protein and amino acids in the Benning × Danbaekkong soybean population[J]. Theoretical and Applied Genetics, 2015, 128(5): 839-850. [33] Mackay, I.,W. Powell. Methods for linkage disequilibrium mapping in crops[J]. Trends in Plant Science, 2007, 12(2): 57-63. [34] Gupta, P.K., S. Rustgi, P.L. Kulwal. Linkage disequilibrium and association studies in higher plants: Present status and future prospects[J]. Plant Molecular Biology, 2005, 57(4): 461-485. [35] Jun, T.-H., K. Van, M.Y. Kim, S.-H. Lee, D.R. Walker. Association analysis using SSR markers to find QTL for seed protein content in soybean[J]. Euphytica, 2008, 162(2): 179-191. [36] Shi, A., P. Chen, B. Zhang, A. Hou. Genetic diversity and association analysis of protein and oil content in food-grade soybeans from Asia and the United States[J]. Plant Breeding, 2010, 129(3): 250-256. [37] Li, Y.-H., M.J.M. Smulders, R.-Z. Chang, L.-J. Qiu. Genetic diversity and association mapping in a collection of selected Chinese soybean accessions based on SSR marker analysis[J]. Conservation Genetics, 2011, 12(5): 1145-1157. [38] Hwang, E., Q. Song, G. Jia, J.E. Specht, D.L. Hyten, J.M. Costa, P.B. Cregan. A genome-wide association study of seed protein and oil content in soybean[J]. BMC Genomics, 2014, 15(1): 1-12. [39] Zhang, D., G. Kan, Z. Hu, H. Cheng, Y. Zhang, Q. Wang, H. Wang, Y. Yang, H. Li, D. Hao. Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean[J]. Theoretical and Applied Genetics, 2014, 127(9): 1905-1915. [40] Myles, S., J.A. Peiffer, P.J. Brown, E.S. Ersoz, Z. Zhang, D.E. Costich, E.S. Buckler. Association Mapping: Critical Considerations Shift from Genotyping to Experimental Design[J]. The Plant Cell, 2009, 21(8): 2194-2202. [41] Korir, P.C., J. Zhang, K. Wu, T. Zhao, J. Gai. Association mapping combined with linkage analysis for aluminum tolerance among soybean cultivars released in Yellow and Changjiang River Valleys in China[J]. Theoretical and Applied Genetics, 2013, 126(6): 1659-1675. [42] Yan, H., H. Wang, H. Cheng, Z. Hu, S. Chu, G. Zhang, D. Yu. Detection and fine-mapping of SC7 resistance genes via linkage and association analysis in soybean[J]. Journal of Integrative Plant Biology, 2015, 57(8): 722-729. [43] Zuo, Q., J. Hou, B. Zhou, Z. Wen, S. Zhang, J. Gai, H. Xing. Identification of QTLs for growth period traits in soybean using association analysis and linkage mapping[J]. Plant Breeding, 2013, 132(3): 317-323. [44] Li, Y., X. Shi, H. Li, J.C. Reif, J. Wang, Z. Liu, S. He, B. Yu, L. Qiu. Dissecting the Genetic Basis of Resistance to Soybean Cyst Nematode Combining Linkage and Association Mapping[J]. The Plant Genome, 2016, 9(2): 1-11. [45] Salvi, S.,R. Tuberosa. To clone or not to clone plant QTLs : present and future challenges[J]. Trends in Plant Science, 2005, 10(6): 297-304. [46] Paterson, A.H., J.W. Deverna, B. Lanini, S.D. Tanksley. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato[J]. Genetics, 1990, 124(3): 735-742. [47] Tanksley, S.D.,J.C. Nelson. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines[J]. Theoretical and Applied Genetics, 1996, 92(2): 191-203. [48] Allard, R.W. Genetic basis of the evolution of adaptedness in plants[J]. Euphytica, 1997, 92: 1-11. [49] Andersen, J.R.,T. Lubberstedt. Functional markers in plants[J]. Trends in Plant Science, 2003, 8(11): 554-560. [50] Varshney, R.K., A. Graner, M.E. Sorrells. Genomics-assisted breeding for crop improvement[J]. Trends in Plant Science, 2005, 10(12): 621-630. [51] Peleman, J.,J.R.V. Der Voort. Breeding by Design[J]. Trends in Plant Science, 2003, 8(7): 330-334.
|