To screen maize inbred lines with high combining ability for single plant grain weight and nitrogen fertilizer agronomic efficiency, using 15 inbred lines as materials, 56 hybrid combinations were constructed according to the NCⅡ mating design. Under low nitrogen stress, the general combining ability of inbred lines for single plant grain weight and nitrogen fertilizer agronomic efficiency were estimated, as well as the specific combining ability of hybrid combinations. The results indicated that the inbred lines with positive general combining ability effects for single plant grain weight were WZ14212, WZ1718-2, 1734A10, Z7A-21, 1734B325, 1735A2 and WZ853, with effect values of 3.97, 2.86, 2.55, 2.13, 1.14, 0.75 and 0.74, respectively. There were 8 hybrid combinations with the special combining ability effect values greater than 7, ranging from 7.46 to 10.64. The inbred lines showed positive general combining ability for nitrogen fertilizer agronomic efficiency were WZ14212, 1734A10, WZ853, 195-73, WZ1718-2 and 1735A2, with effect values of 9.96, 5.06, 4.63, 2.45, 1.78 and 1.55, respectively. There were 11 hybrid combinations with the special combining ability effect values greater than 10, ranging from 10.95 to 24.86. Correlation analysis showed that under low nitrogen stress, there was a significant positive correlation between the single plant grain weight of hybrid combinations and the general combining ability of the single plant grain weight with male parent inbred line, r were 0.2921*; there were highly significant and significant positive correlations between nitrogen fertilizer agronomic efficiency of hybrid combinations and the general combining ability of nitrogen fertilizer agronomic efficiency with its diploid inbred lines, r were 0.3848** and 0.3289*, respectively; and there were highly significant positive correlations between both the single plant grain weight and agronomic efficiency of nitrogen fertilizer in hybrid combinations with their total combining ability effects, r were 0.9669** and 0.9455**, respectively. The results suggested that WZ14212, WZ1718-2, Z7A-21, 1734A10, 1734B325, 1735A2 and WZ853 could be inbred lines developing hybrid combinations with high single plant grain weight and nitrogen fertilizer agronomic efficiency in maize breeding programs.