Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (13): 135-146.doi: 10.11924/j.issn.1000-6850.casb2020-0362
Previous Articles Next Articles
Zhang Yutang(), Xie Xiaochun(
)
Received:
2020-08-14
Revised:
2020-12-15
Online:
2021-05-05
Published:
2021-05-18
Contact:
Xie Xiaochun
E-mail:928138637@qq.com;151665142@qq.com
CLC Number:
Zhang Yutang, Xie Xiaochun. Single Tree Detection Method in Natural Environment: Based on Improved Faster-RCNN Network[J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 135-146.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0362
Clusters | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean IoU | 0.6832 | 0.7494 | 0.7945 | 0.8220 | 0.8387 | 0.8486 | 0.8578 | 0.8635 | 0.8689 | 0.8739 | 0.8793 | 0.8835 | 0.8856 | 0.8906 | 0.8936 | 0.8972 |
Clusters | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean IoU | 0.6832 | 0.7494 | 0.7945 | 0.8220 | 0.8387 | 0.8486 | 0.8578 | 0.8635 | 0.8689 | 0.8739 | 0.8793 | 0.8835 | 0.8856 | 0.8906 | 0.8936 | 0.8972 |
网络模型 | 平均精度/% | 召回率/% | F1/% | 单幅图像检测时间/s | 模型大小/MB |
---|---|---|---|---|---|
Faster-RCNN | 90.43 | 90.61 | 90.52 | 0.231 | 368.8 |
Des Faster-RCNN | 94.35 | 95.78 | 95.06 | 0.163 | 196.7 |
YOLOv3 | 78.57 | 84.36 | 81.37 | 0.047 | 240.5 |
SSD | 86.68 | 87.53 | 87.10 | 0.121 | 278.4 |
K-means-Des Faster-RCNN | 97.68 | 97.99 | 97.83 | 0.138 | 196.7 |
网络模型 | 平均精度/% | 召回率/% | F1/% | 单幅图像检测时间/s | 模型大小/MB |
---|---|---|---|---|---|
Faster-RCNN | 90.43 | 90.61 | 90.52 | 0.231 | 368.8 |
Des Faster-RCNN | 94.35 | 95.78 | 95.06 | 0.163 | 196.7 |
YOLOv3 | 78.57 | 84.36 | 81.37 | 0.047 | 240.5 |
SSD | 86.68 | 87.53 | 87.10 | 0.121 | 278.4 |
K-means-Des Faster-RCNN | 97.68 | 97.99 | 97.83 | 0.138 | 196.7 |
anchor尺寸 | 平均精度AP | 训练时间/min |
---|---|---|
0.04 | 0.863 | 588 |
0.02,0.06 | 0.894 | 753 |
0.03,0.05,0.07 | 0.976 | 1023 |
0.02,0.04,0.06,0.08 | 0.973 | 1438 |
0.01,0.03,0.05,0.07,0.09 | 0.887 | 2136 |
anchor尺寸 | 平均精度AP | 训练时间/min |
---|---|---|
0.04 | 0.863 | 588 |
0.02,0.06 | 0.894 | 753 |
0.03,0.05,0.07 | 0.976 | 1023 |
0.02,0.04,0.06,0.08 | 0.973 | 1438 |
0.01,0.03,0.05,0.07,0.09 | 0.887 | 2136 |
[1] |
Shafrihz M, Hamdan N, Saripan M I. Semi-automatic detection and counting of oil palm trees from high spatial resolution airborne imagery[J]. International Journal of Remote Sensing, 2011,32(8):2095-2115.
doi: 10.1080/01431161003662928 URL |
[2] | 林怡, 季昊巍, 叶勤. 基于LiDAR点云的单棵树木提取方法研究[J]. 计算机测量与控制, 2017,25(6):142-147. |
[3] | Puliti S, Talbot. Tree-Stump Detection, Segmentation, Classification, and Measurement Using Unmanned Aerial Vehicle(UAV) Imagery[J]. Forests, 2018. |
[4] | 李东洋, 胡博, 郑彦春, 唐冬梅. 基于机载激光点云数据及航片的单木提取研究[J]. 电力勘测设计, 2017(S1):79-82,91. |
[5] | 甄贞, 李响, 修思玉, 等. 基于标记控制区域生长法的单木树冠提取[J]. 东北林业大学学报, 2016,44(10):22-29. |
[6] | Weijia L, Haohuan F, Le Y, et al. Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images[J]. Remote Sensing, 2016,9(1):22. |
[7] | 张杰, 胡海棠, 张丽, 等. 基于高分辨率影像的蔡家河流域人工林CropScience单木提取与缺失检测[J]. 西南林业大学学报:自然科学, 2019,39(1):139-145. |
[8] | Zheng J, Li W, Xia M, et al. Large-Scale Oil Palm Tree Detection from High-Resolution Remote Sensing Images Using Faster-RCNN[A].// IGARSS 2019- 2019 IEEE International Geoscience and Remote Sensing Symposium[C]. IEEE, 2019. |
[9] | Dong R, Li W, Fu H, et al. Oil palm plantation mapping from high-resolution remote sensing images using deep learning[J]. International Journal of Remote Sensing, 2019(2):1-25. |
[10] | Saro J, Kavit A. Review: Study on Simple K Mean and Modified K Mean Clustering Technique[J]. International Journal of Computer Science Engineering and Technology, 2016,6(7):279-281. |
[11] | Luo W, Li Y, Urtasun R, et al. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks[J]. Computer Science, 2017. |
[12] | Ren S, He K, Girshick R, et al. Faster R-CNN: Towards Real- Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015,39(6):1137-1149. |
[13] |
Pan S J, Yang Q. A Survey on Transfer Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010,22(10):1345-1359.
doi: 10.1109/TKDE.2009.191 URL |
[14] | Tanwar V K, Rajput A S, Raman B, et al. Privacy Preserving Image Scaling Using 2D Bicubic Interpolation Over the Cloud[A].// 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC)[C]. IEEE, 2018. |
[15] |
Parker J A, Kenyon R V, Troxel D E. Comparison of Interpolating Methods for Image Resampling[J]. IEEE Transactions on Medical Imaging, 2007,2(1):31-39.
doi: 10.1109/TMI.1983.4307610 URL |
[16] | Liu Y, Wang F, Hu D, et al. Multi-feature fusion with SVM classification for crime scene investigation image retrieval[A].// IEEE International Conference on Signal & Image Processing[C]. IEEE, 2017. |
[17] | Olivier R, Hanqiang C. Nearest Neighbor Value Interpolation[J]. International Journal of Advanced Computer ence & Application, 2012,3(4):25-30. |
[18] | He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[A].// IEEE Conference on Computer Vision & Pattern Recognition[C]. IEEE Computer Society, 2016. |
[19] | Gao Huang, Zhuang Liu, Laurens van der Maaten, et al. Densely Connected Convolutional Networks[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708 |
[20] | Girshick R. Fast R-CNN[A]. IEEE International Conference on Computer Vision[C]. Santigago, Chile, 2015. |
[21] | Goyal P, Dollár, Piotr, et al. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour[J]. Computer Science, 2017. |
[1] | HAO Jing, JIA Zongwei. Comparative Study on Apple Leaf Disease Recognition Models Based on Image Recognition [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 153-158. |
[2] | Li Bo, Jiang Zhaohui, Xie Jun, Rao Yuan, Zhang Wu. Leaf Disease Recognition of Horticultural Crops Based on Transfer Learning and Its Application [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 138-143. |
[3] | Cui Kuoshu, Aftab Ahmed, Aaqil Khan, George Bawa, Fang Qingmao, Li Jun, Zhu Wentao, Jin Fu, Shi Jianyi, Peng Teng, Wu Maoli, Xiao Te, Yang Wenyu. The Influence of Stem Tuber on Polygonatum cyrtonema Yield and Medicinal Quality [J]. Chinese Agricultural Science Bulletin, 2021, 37(19): 95-99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||