[1] Loss S P, Siddique K H M. Morphological and physiological traits associated with wheat yield increases in Mediterranean environments[J]. Advances in Agronomy, 1994, 52:229-276. [2] Grando S, Ceccarelli S. Seminal root morphology and coleoptile length in wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) barley[J]. Euphytica, 1995, 86:73-80. [3] Lowlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant Cell Environment, 2002, 25:275-294. [4] Martínez J P, Ledent J F, Bajji M, et al. Effect of water stress on growth, Na and K accumulation and water use efficiency in relation to osmotic adjustment in two populations of Atriplex halimus L.[J]. Plant Growth Regulator, 2003, 41: 63-73. [5] Tadina N, Germ M, Kreft I, et al. Effects of water deficit and selenium on common buckwheat (Fagopyrum esculentum Moench.) plants[J]. Photosynthetica, 2007, 45:472-476. [6] Ren J, Dai W R, Xuan Z Y, et al. The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species[J]. Forage Ecology Management, 2007, 239:112-119. [7] 吴同彦, 冯大领, 白志英, 等. 小麦抗旱机制研究进展[J]. 干旱地区农业研究, 2009, 27 (5):97-100. [8] 余玲, 王彦荣, Garnett T, 等. 紫花苜蓿不同品种对干旱胁迫的生理响应[J]. 草业学报, 2006, 15 (3): 75-85. [9] Morgan J M, Hare R A, Fletcher R J. Genetic variation in osmoregulation in bread and durum wheats and its relationship to grain yield in a range of field environments[J]. Australia Journal of Agriculture Research, 1986, 37:449-457. [10] Liu F, Christian R, Shahanzari JA, et al. ABA regulated stomata control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying[J]. Plant Science, 2005, 168:831-836. [11] Shimazaki Y, Ookawa T, Hirazawa T. The root tip and accelerating region supress elongation of the decelerating region without any effects on cell turgor in primary roots of maize under water stress[J]. Plant Physiology, 2005, 139:458-465. [12] Nanjo T, Kobayashi M, Yoshiba Y, et al. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana[J]. Plant Journal, 1999, 18:185-193. [13] Pritchard J, Wyn Jones R G, Tomos A D. Turgor, growth and rheological gradients of wheat roots following osmotic stress[J]. Journal of Experimental Botany, 1991, 42:1043-1049 [14] Wu Y, Cosgrove D J. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins[J]. Journal of Experimental Botany, 2000, 51:1543-1553 [15] Sahnoune M, Adda A, Soualem S, et al. Early water deficit effect on seminal root barley[J]. Comptes Rendus Bilogies, 2004, 327:389-398. [16] Turner NC. Further progress in crop water relations[J]. Advances in Agronomy, 1997, 58: 293-338. [17] Liu F, Stützel H. Biomass partitioning, specific leaf area and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to water stress[J]. Scientia Horticulturae, 2004, 102:15–27. [18] Casimiro I T, Beeckman N, Graham R, et al. Dissecting Arabidopsis lateral root development [J]. Trends of Plant Science, 2003, 8:165-17. [19] López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture[J]. Current Opinion of Plant Biology, 2003, 6:280-287 [20] Malamy J E. Intrinsic and environmental response pathways that regulate root system architecture[J]. Plant, Cell Environment, 2005, 28:67-77. [21] Signora L, De Smet I, Foyer C H, et al. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis[J]. Plant Journal, 2001, 28:655-662. [22] Sharp R E, LeNoble M E. ABA, ethylene and the control of shoot and root growth under water stress[J]. Journal of Experimental Botany, 2002, 53: 33-37. [23] Schroeder J I, Allen G J, Hugouvieux V, et al. Guard cell signal transduction[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52:627-658. [24] Pareek A, Sopory S A, Bohner H J, et al. Abiotic stress adaptation in plants[M]. Dordrecht: Springer, 2010. 3373. [25] Mori I C, Murata Y. ABA signaling in stomatal guard cells: lessons from Commelina and Vicia[J]. Journal of Plant Research, 2011, 124:477-487. [26] Wang Y, Ying J, Kuzma M, et al. Molecular tailoring of farnesylation for plant drought tolerance and yield protection[J]. Plant Journal, 2005, 43:413-24. [27] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 2007, 58:221-227. [28] Dobrev PI, Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. Journal of Chromatography A, 2002, 950:21-29. [29] Albacete A, Ghanem M E, Martinez-Andujar C, et al. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants[J]. Journal of Experimental Botany, 2008, 59:4119-4131. [30] McAdam S A M, Brodribb T J. Fern and lycophyte guard cells do not respond to endogenous abscisic acid[J]. Plant Cell, 2012, 24:1510-1521. [31] Outlaw WH. Integration of cellular and physiological functions of guard cells[J]. Critical Review of Plant Science, 2003, 22:503-529. [32]李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系[J]. 生态学报, 2010, 30(19): 5140-5150. [33]丁红, 张智猛, 戴良香, 等. 干旱胁迫对花生根系生长发育和生理特性的影响[J]. 应用生态学报, 2013, 24(6):1586-1592. [34] Nativ R, Ephrath J E, Berliner P R, et al. Drought resistance and water use efficiency in Acacia saligna[J]. Australia Journal of Botany, 1999, 47:577–586. [35] Marron N, Delay D, Petit J M, et al. Physiological traits of two Populus × euramericana clones, Luisa avanzo and dorskamp, during water stress and re watering cycle[J]. Tree Physiology, 2002, 22:849-858. [36] Nautiyal P C, Ravindra V, Joshi Y C. Dry matter partitioning and water use efficiency under water deficit during various growth stages in groundnut[J]. Indian Journal of Plant Physiology, 2002, 7:135-139. [37] Sacks M M, Silk W K, Burman P. Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize[J]. Plant Physiology, 1997, 114:519-527. [38] Rao R C N, Williams J H, Wadia K D R, et al. Crop growth, water use efficiency and carbon isotope discrimination in groundnut genotypes under end season drought conditions[J]. Annual Applied Biology, 1993, 122:357-367. [39] Manivannan P, Jaleel C A, Kishorekumar A, et al. Drought stress induced changes in the biochemical parameters and photosynthetic pigments of cotton (Gossypium hirsutum L.)[J]. Indian Journal of Applied Pure Biology, 2007, 52:369372. [40] Nicholas S . Plant resistance to environmental stress[J]. Current Opinion of Biotechnology, 1998, 9:214-219. [41] Wullschleger S D, Yin T M, DiFazio S P, et al. Phenotypic variation in growth and biomass distribution for two advanced-generation pedigrees of hybrid poplar[J]. Canada Journal of Forrest Research, 2005, 35:1779-1789. [42]潘晓云, 王永芳, 王根轩, 等. 覆膜栽培下春小麦种群的生长冗余与个体大小不整齐性的关系[J]. 植物生态学报, 2002, 26(2):177-184. [43] Morgan J M. Osmoregulation and water stress in higher plants[J]. Annual Review of Plant Physiology, 1984, 35:299-319.
|