欢迎访问《中国农学通报》,

中国农学通报 ›› 2018, Vol. 34 ›› Issue (24): 18-28.doi: 10.11924/j.issn.1000-6850.casb18030021

所属专题: 玉米 农业气象

• 农学 农业基础科学 • 上一篇    下一篇

基于颜色和纹理特征的玉米干旱识别

岳焕然,李茂松,安江勇   

  1. 中国农业科学院农业资源与农业区划研究所,中国农业科学院农业资源与农业区划研究所,中国农业科学院农业资源与农业区划研究所
  • 收稿日期:2018-03-05 修回日期:2018-03-15 接受日期:2018-03-23 出版日期:2018-08-28 发布日期:2018-08-28
  • 通讯作者: 李茂松
  • 基金资助:
    中国农业科学院科技创新工程“农业灾害监测预警新技术新方法研发”(CAAS-ASTIP-IARRP-2013)。

Drought Identification of Maize Based on Color and Texture Features

  • Received:2018-03-05 Revised:2018-03-15 Accepted:2018-03-23 Online:2018-08-28 Published:2018-08-28

摘要: 探究以颜色和纹理为特征,以神经网络建模为方法,识别玉米干旱的效果。利用可见光成像方式采集不同干旱胁迫下的玉米图像,通过编程从玉米图像中自动提取颜色和纹理特征变量,以多个BP神经网络集成学习的方法构建玉米不同生长发育阶段的干旱识别模型,识别不同干旱程度的玉米植株。结果表明:玉米出苗—拔节阶段的模型在训练和验证时的平均识别准确率和平均识别精度均在90%以上,识别误差均值小于0.1;拔节—抽雄阶段的模型在训练和验证时识别干旱的平均准确率和平均识别精度均在85%以上,识别误差均值为0.1和0.14;抽雄—成熟阶段的模型在训练和验证时识别干旱的平均准确率分别为85.36%和84.27%,平均精度在均在80%以上,识别误差均值为0.15和0.16。玉米出苗—拔节、拔节—抽雄、抽雄—开花3个阶段的干旱识别模型对田间玉米干旱的平均识别准确率在75%左右,平均识别精度在80%以上,平均识别误差依次为0.22、0.21、0.29。总之,出苗—拔节阶段的玉米干旱识别模型识别干旱的能力最强,拔节—抽雄阶段的模型次之,抽雄—成熟阶段的模型较差,同一模型对同一干旱程度的识别,模型训练时的识别效果最好,验证时的识别效果次之,测试效果较差,同一模型对不同干旱程度的识别,总体表现为对中旱水平识别效果最不理想,对适宜和特旱水平的识别效果最好。研究结果为玉米干旱特征模式识别和利用表型特征实现玉米旱情自动监测预警提供参考。

关键词: 切花红掌, 切花红掌, 天使, 火焰, 玛丽西亚, 光合作用, 日变化

Abstract: 【Objective】The purpose of this paper is to explore the effect of identifying maize drought, for which the color and texture features of maize and the neural network modeling method were used. 【Method】The maize images under different drought stress were collected by visible light imaging method, from which the color and texture features of maize were extracted automatically by programming. Then the drought identification models of different maize growth stages were built by the ensemble learning of multiple BP neural networks. 【Result】The results show that both the average identification accuracy and the average identification precision of the maize emergence-jointing stage model are more than 90% at training and validation, and the average value of training and validation errors are less than 0.1. The average identification accuracy and the average identification precision of the jointing-tasseling stage model are more than 85% at the training and validation, and the average identification errors in training and validation are 0.1 and 0.14. The average drought identification accuracies of the tasseling-maturing stage model at training and validation are 85.36% and 84.27%, and the average precision is more than 80%, and the average identification errors are 0.15 and 0.16. All the maize growth stage drought identification models can identify field maize drought with the about 75% average accuracy and the more than 80% average identification precision, and the average identification error values of three growth stage models are 0.22, 0.21, 0.29. 【Conclusion】In conclusion, the ability of identifying drought of maize emergence-jointing stage model is strongest, followed by the jointing-tasseling stage drought identification model, but the drought identification model for tasseling-maturing stage is relatively poor. For the same drought level identification using the same model, the identification effect at training is best, second at validation, but relatively poor at testing. For the different drought level identifications using the same model, the identification effect for medium drought is not ideal, but better for drought-free and extreme level. The results provide a reference for the maize drought pattern recognition and the automatic monitoring, and lay the foundation for the early warning of maize drought by using phenotypic characteristics.

中图分类号: