中国农学通报 ›› 2020, Vol. 36 ›› Issue (11): 63-73.doi: 10.11924/j.issn.1000-6850.casb18120133
所属专题: 农业气象
收稿日期:
2018-12-31
修回日期:
2019-05-28
出版日期:
2020-04-15
发布日期:
2020-04-28
通讯作者:
王庆贵
作者简介:
丁丽智,女,1995年出生,山东泰安人,在读硕士,主要从事细根生物学方面的研究。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学农业资源与环境学院,E-mail: 422526446@qq.com
基金资助:
Ding Lizhi, Xing Yajuan, Yan Guoyong, Wang Qinggui()
Received:
2018-12-31
Revised:
2019-05-28
Online:
2020-04-15
Published:
2020-04-28
Contact:
Wang Qinggui
摘要:
为了在全球大气N沉降增加和温度升高的背景下,细根生产和细根生理生态的潜在变化将如何影响森林土壤中的养分供应和陆地C循环。本研究基于34篇国内外已发表的北方森林N沉降、温度升高及其交互作用的170组细根数据,通过meta分析的方法,研究了细根对升温、增N以及二者交互作用的响应。结果表明:(1)增N显著抑制了北方森林细根生物量,明显增加了细根C、N含量,而P则显著减少,细根的呼吸速率显著增加,细根形态变得细长;(2)增温显著增加了土壤C素的有效性,细根的生物量、组织密度、N吸收速率、组织N浓度和呼吸显著增加,但是细根的C和N含量、比根长、直径和呼吸速率却随着温度的增加明显减少;(3)在升温增N的交互作用下,除组织N浓度受到抑制以外,细根生物量、呼吸速率、C、N含量均显著增加。研究表明:升温增N显著影响了北方森林细根的生物量、周转率、养分含量和形态特征,可为改进和完善C收支模型提供参考依据和数据支持。
中图分类号:
丁丽智, 邢亚娟, 闫国永, 王庆贵. 北方森林细根对大气N沉降增加和温度升高的响应[J]. 中国农学通报, 2020, 36(11): 63-73.
Ding Lizhi, Xing Yajuan, Yan Guoyong, Wang Qinggui. Fine Roots in Northern Forests: Response to Atmospheric N Deposition Increase and Temperature Rise[J]. Chinese Agricultural Science Bulletin, 2020, 36(11): 63-73.
[1] |
Dixon R K, Brown S, Houghton R A , et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994,263:185-190.
doi: 10.1126/science.263.5144.185 URL pmid: 17839174 |
[2] |
Gower S T, Krankina O, Olson R J , et al. Net primary production and carbon allocation patterns of boreal forest ecosystems[J]. Ecol. Appl., 2001,11:1395-1411.
doi: 10.1890/1051-0761(2001)011[1395:NPPACA]2.0.CO;2 URL |
[3] |
Yuan Z Y, Chen H . Fine Root Biomass, Production, TurnoverRates , Nutrient Contents in Boreal Forest Ecosystems in Relation to Species, Climate, Fertility, and Stand Age: Literature Review and Meta-Analyses[J]. Critical Reviews in Plant Sciences, 2010,29(4):204-221.
doi: 10.1080/07352689.2010.483579 URL |
[4] |
Majdi H, Ohrvik J . Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden[J]. Global Change Biology, 2004,10:182-188.
doi: 10.1111/gcb.2004.10.issue-2 URL |
[5] | Kottke I, Gábor Kovács . Mycorrhizae-Rhizosphere Determinants of Plant Cocmunities[M]. Mycorrhizae-rhizosphere determinants of plant cocmunities, 2002. |
[6] |
Leuschner C, Hertel D, Schmid I , et al. Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility[J]. Plant and Soil, 2004,258(1):43-56.
doi: 10.1023/B:PLSO.0000016508.20173.80 URL |
[7] |
Ostonen I, Uri V, Vanguelova E . Variation in fine root biomass of three European tree speCIes: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.)[J]. Plant Biosys, 2007,141:394-405.
doi: 10.1080/11263500701625897 URL |
[8] | Bloomfield J, Vogt K, Wargo PM. Tree root turnover and senescence[M]. In: Waisel Y, Eshel A, Kafkafi U, eds. Plant roots: the hidden half. New York, USA: Marcel Dekker, 1996: 363-381. |
[9] |
Reay D S, Dentener F, Smith P , et al. Global nitrogen deposition and carbon sinks[J]. Nature GeosCIence, 2008,1:430-437.
doi: 10.1038/ngeo230 URL |
[10] | Pregitzer K S, Burton A J, Zak D R , et al. Simulated chronic nitrogen deposition increases carbon storage in Northern temperate forests[J]. Global Change Biology, 2008,14:142-153. |
[11] |
Reay D S, Dentener F, Smith P , et al. Global nitrogen deposition and carbon sinks[J]. Nature Geoscience, 2016,1(7):430-437.
doi: 10.1038/ngeo230 URL |
[12] |
Nadelhoffer K J . The potential effects of nitrogen deposition on fine-root production in forest ecosystems[J]. New Phytologist, 2000,147(1):131-139.
doi: 10.1046/j.1469-8137.2000.00677.x URL |
[13] | Rasse D P . Nitrogen deposition and atmospheric CO2 interactions on fine root dynamics in temperate forests: a theoretical model analysis[J]. Global Change Biology, 2002: 8. |
[14] | 涂利华, 胡庭兴, 张健 , 等. 模拟氮沉降对华西雨屏区苦竹林细根特性和土壤呼吸的影响[J]. 应用生态学报, 2010,21(10):2472-2478. |
[15] |
Jourdan C, Silva E V, Goncalves J L M , et al. Fine root production and turnover in Brazilian Eucalyptus plantations under contrasting nitrogen fertilization regimes[J]. Forest Ecology and Management, 2008,256(3):396-404.
doi: 10.1016/j.foreco.2008.04.034 URL |
[16] | Tamm C O . Nitrogen in terrestrial ecosystems: questions of productivity, vegetational changes, and ecosystem stability[M]. Springer Science & Business Media, 2012. |
[17] |
Vitousek P M, Porder S, Houlton B Z , et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions[J]. Ecological Applications, 2010,20(1):5-15.
doi: 10.1890/08-0127.1 URL pmid: 20349827 |
[18] |
贾淑霞, 赵妍丽, 丁国泉 , 等. 落叶松和水曲柳不同根序细根形态结构、组织氮浓度与根呼吸的关系[J]. 植物学报, 2010,45(2):174-181.
doi: 10.3969/j.issn.1674-3466.2010.02.005 URL |
[19] |
许辰森, 熊德成, 邓飞 , 等. 杉木幼苗和伴生植物细根对土壤增温的生理生态响应[J].生态学报,2017(4):1232-1243.
doi: 10.5846/stxb201607171455 URL |
[20] |
史顺增, 熊德成, 冯建新 , 等. 模拟氮沉降对杉木幼苗细根的生理生态影响[J].生态学报,2017(1):74-83.
doi: 10.5846/stxb201604150696 URL |
[21] |
Hendricks J J, Hendrick R L, Wilson C A , et al. Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review[J]. Journal of Ecology, 2006,94(1):40-57.
doi: 10.1111/jec.2006.94.issue-1 URL |
[22] |
Schier G A, Mcquattie C J, Jensen K F . Effect of ozone and aluminum on pitch pine (Pinusrigida) seedlings: needle ultrastructure[J]. Canadian Journal of Forest Research, 1993,20(11):1714-1719.
doi: 10.1139/x90-228 URL |
[23] | Galloway J N, Dentener F J, Capone D G , et al. Nitrogen Cycles: Past, Present, and Future[J]. Biogeochemistry (Dordrecht), 2004,70(2):153-226. |
[24] |
Vogt K A, Vogt D J, Palmiotto P A , et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species[J]. Plant and Soil, 1995,187(2):159-219.
doi: 10.1007/BF00017088 URL |
[25] |
Bonan G B, Cleve K V . Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forests[J]. Canadian Journal of Forest Research, 1992,22(5):629-639.
doi: 10.1139/x92-084 URL |
[26] | Pregitzer K S, King J S. Effects of soil temperature on nutrient uptake[J].In: Bassiri Rad, H. (Ed.)., Nutrient Acquisition by Plants. New York:Springer, 2005: 277-310. |
[27] | Cruz Ramfrez A, Calderon Vazquez C, Herrera Estrella L. Effect of nutrient availability on root system development[M]. In: Beeckman, T. (Ed.).,Annual Plant Reviews, Root Development. Oxford (UK): John Wiley & Sons, 2010: 288-324. |
[28] |
Jia S, Wang Z, Li X , et al. Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica[J]. Tree Physiology, 2011,31(7):718-726.
doi: 10.1093/treephys/tpr057 URL |
[29] | Kasurinen A, Koikkalainen K, Anttonen M J , et al. Root morphology, mycorrhizal roots and extramatrical mycelium growth in silver birch (Betula pendula Roth) genotypes exposed to experimental warming and soil moisture manipulations[J]. Plant & Soil, 2016,407(1/2):1-13. |
[30] | Hari P . Boreal forest and climate change[J]. Advances in Global Change Research, 2008,34(1):93-101. |
[32] | Vogt K A, Grier C C, Vogt D J . Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests[J]. Advances in Ecological Research, 1986,15(15):303-377. |
[33] |
Brassard B W, Chen H Y H, Bergeron Y . Taylor & Francis Online:Influence of Environmental Variability on Root Dynamics in Northern Forests-Critical Reviews in Plant Sciences-Volume 28, Issue 3[J]. Critical Reviews in Plant Sciences, 2009,28(3):179-197.
doi: 10.1080/07352680902776572 URL |
[34] |
陈晓萍, 郭炳桥, 钟全林 , 等. 武夷山不同海拔黄山松细根碳、氮、磷化学计量特征对土壤养分的适应[J]. 生态学报, 2018,38(1):273-281.
doi: 10.5846/stxb201701040034 URL |
[35] |
Jerbi A, Nissim W G, Fluet, Rémy , et al. Willow Root Development and Morphology Changes Under Different Irrigation and Fertilization Regimes in a Vegetation Filter[J]. BioEnergy Research, 2015,8(2):775-787.
doi: 10.1007/s12155-014-9550-5 URL |
[36] | Gurevitch J, Hedges L V. Meta-analysis. Combining the results of independent experiments[A].In: Scheiner SM, Gurevitch J, editors. Design and analysis of ecological experiments, 2nd ed[C].Oxford: Oxford University Press, 2001: 347-369. |
[37] | Rosenberg MS, Adams DC, Gurevitch J . MetaWin, version 2.1[M]. Sunderland, MA: Sinauer AssoCIates, 2000. |
[38] |
Hedges L M, Brownlie J C, O"Neill S L , et al. Wolbachia and Virus Protection in Insects[J]. Science, 2008,322(5902):702.
doi: 10.1126/science.1162418 URL pmid: 18974344 |
[39] | Santantonio D, Hermann R K . Standing crop, production, and turnover of fine roots on dry, moderate, and wet sites of mature Douglas-fir in western Oregon[J]. Ann.for.sci, 1985,42(2):113-142. |
[40] |
Nadelhoffer K J . The potential effects of nitrogen deposition on fine-root production in forest ecosystems[J]. New Phytologist, 2000,147(1):131-139.
doi: 10.1046/j.1469-8137.2000.00677.x URL |
[41] |
Keyes M R, Grier C C . Above-and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites[J]. Canadian Journal of Forest Research, 2011,11(3):599-605.
doi: 10.1139/x81-082 URL |
[42] |
Aber J D, Melillo J M, Nadelhoffer K J , et al. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods[J]. Oecologia, 1985,66(3):317-321.
doi: 10.1007/BF00378292 URL pmid: 28310856 |
[43] |
Helmisaari H S, Saarsalmi A, Kukkola M . Effects of wood ash and nitrogen fertilization on fine root biomass and soil and foliage nutrients in a Norway spruce stand in Finland[J]. Plant and Soil, 2009,314(1/2):121-132.
doi: 10.1007/s11104-008-9711-4 URL |
[44] |
Ryan M G, Hubbard R M, Pongracic S , et al. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status[J]. Tree Physiology, 1996,16(3):333-343.
doi: 10.1093/treephys/16.3.333 URL pmid: 14871734 |
[45] |
Burton A J, Pregitzer K S, Ruess R W , et al. Root Respiration in North American Forests: Effects of Nitrogen Concentration and Temperature across Biomes[J]. Oecologia, 2002,131(4):559-568.
doi: 10.1007/s00442-002-0931-7 URL pmid: 28547551 |
[46] |
Olsson P A, Burleigh S H, Aarle I M V . The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza[J]. New Phytologist, 2005,168(3):677-686.
doi: 10.1111/j.1469-8137.2005.01532.x URL pmid: 16313649 |
[47] |
Drake I J, Fujdala K L, Bell A T , et al. Dimethyl carbonate production via the oxidative carbonylation of methanol over Cu/SiO2 catalysts prepared via molecular precursor grafting and chemical vapor deposition approaches[J]. Journal of Catalysis, 2005,230(1):14-27.
doi: 10.1016/j.jcat.2004.10.001 URL |
[48] | Hyvonen R, Persson T, Andersson S , et al. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe[J]. Biogeochemistry (Dordrecht), 2008,89(1):121-137. |
[49] |
Sabine Güsewell N: P ratios in terrestrial plants: variation and functional significance: Tansley review[J]. New Phytologist, 2004,164(2):243-266.
doi: 10.1111/j.1469-8137.2004.01192.x URL |
[50] |
Vitousek P M, Porder S, Houlton B Z , et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions[J]. Ecological Applications, 2010,20(1):5-15.
doi: 10.1890/08-0127.1 URL pmid: 20349827 |
[51] | 蔡鲁 . 山东省干旱瘠薄山地主要造林树种根系形态的比较[D]. 山东:山东农业大学, 2014. |
[52] |
Sattelmacher B, Marschner H, KüHNE, R . Effects of the Temperature of the Rooting Zone on the Growth and Development of Roots of Potato (Solanum tuberosum)[J]. Annals of Botany, 1990,65(1):27-36.
doi: 10.1093/oxfordjournals.aob.a087903 URL |
[53] |
De Giorgio D, Fornaro F . Nitrogen fertilization and root growth dynamics of durum wheat for a sustainable production[J]. Italian Journal of Agronomy, 2012,7:29.
doi: 10.4081/ija.2012.e29 URL |
[54] |
Fageria N K, Moreira A . Chapter Four-The Role of Mineral Nutrition on Root Growth of Crop Plants[J]. Advances in Agronomy, 2011,110:251-331.
doi: 10.1016/B978-0-12-385531-2.00004-9 URL |
[55] |
Razaq M, Salahuddin, Shen H L , et al. Influence of biochar and nitrogen on fine root morphology, physiology, and chemistry of Acer mono[J]. Scientific Reports, 2017,7(1):5367.
doi: 10.1038/s41598-017-05721-2 URL pmid: 28710473 |
[56] |
Li W, Jin C, Guan D , et al. The effects of simulated nitrogen deposition on plant root traits: A meta-analysis[J]. Soil Biology and Biochemistry, 2015,82:112-118.
doi: 10.1016/j.soilbio.2015.01.001 URL |
[57] |
Vogt K A, Vogt D J, Palmiotto P A , et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species[J]. Plant and Soil, 1995,187(2):159-219.
doi: 10.1007/BF00017088 URL |
[58] |
Jackson R B, Mooney H A, Schulze E D . A global budget for fine root biomass, surface area, and nutrient contents[J]. Proceedings of the National Academy of Sciences, 1997,94(14):7362-7366.
doi: 10.1073/pnas.94.14.7362 URL pmid: 11038557 |
[59] | L Finér, Helmisaari H S, K. Lõhmus , et al. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.)[J]. Giornale botanico italiano, 2007,141(3):12. |
[60] |
McConnaughay K D M, J S Coleman . Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients[J]. Ecology, 1999,80(8):2581-2593.
doi: 10.1890/0012-9658(1999)080[2581:BAIPOO]2.0.CO;2 URL |
[61] | Majdi H, Viebcke C . Effects of fertilization with dolomite Lime plus PK or wood ash on root distribution and morphology in a Norway spruce stand in Southwest Sweden[J]. Forest Science, 2004,50(6):802-809. |
[62] |
Reich P B, Walters M B, Tjoelker M G , et al. Photosynjournal and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate[J]. Functional Ecology, 2010,12(3):395-405.
doi: 10.1046/j.1365-2435.1998.00209.x URL |
[63] | Eissenstat D. M, Yanai R. D . The Ecology of Root Lifespan[J]. Advances in Ecological Research, 1997,27:1-60. |
[64] |
Hendrick R L, Pregitzer K S . Patterns of fine root mortality in two sugar maple forests[J]. Nature (London), 1993,361(6407):59-61.
doi: 10.1038/361059a0 URL |
[65] | Ryser P . The importance of tissue density for growth and life span of leaves and roots: A comparison of five ecologically contrasting grasses[J]. Funct.l Ecol, 1996,10:717-723. |
[66] |
Boone R D, Nadelhoffer K J, Canary J D , et al. Roots exert a strong influence on the temperature sensitivity of soil respiration[J]. Nature, 1998,396(6711):570.
doi: 10.1038/25119 URL |
[67] | Pregitzer K S, Zak D R, Maziasz J , et al. Interactive effects of atmospheric CO2, and soil N availability on fine roots of Populus tremuloides[J]. Ecological Applications, 2000,10(1):18-33. |
[68] |
Haynes B E, Gower S T . Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin[J]. Tree Physiology, 1995,15(5):317-325.
doi: 10.1093/treephys/15.5.317 URL pmid: 14965955 |
[69] |
Jia S, Wang Z, Li X , et al. N fertilization affects on soil respiration, microbial biomass and root respiration in Larix gmelinii and Fraxinus mandshurica plantations in China[J]. Plant and Soil, 2010,333(1-2):325-336.
doi: 10.1007/s11104-010-0348-8 URL |
[70] |
Liu W . Correlation between specific fine root length and mycorrhizal colonization of maize in different soil types[J]. Frontiers of Agriculture in China, 2009,3(1):13-15.
doi: 10.1007/s11703-009-0004-3 URL |
[71] | Gough C M, Seiler J R, Maier C A . Short-term effects of fertilization on loblolly pine (Pinus taeda L.) physiology[J]. Plant Cell & Environment, 2010,27(7):876-886. |
[72] |
Olsson P, Linder S, Giesler R , et al. Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration[J]. Global Change Biology, 2010,11(10):1745-1753.
doi: 10.1111/gcb.2005.11.issue-10 URL |
[73] | Lambers H, F.S. Chapin, T.L. Pons . Plant physiological ecology[M]. 2nd ed. Springer, New York, 1998: 135. |
[74] |
Scheurwater I, Dünnebacke M, Eising R , et al. Respiratory costs and rate of protein turnover in the roots of a fast-growing (Dactylis glomerata L.) and a slow-growing (Festuca ovina L.) grass species[J]. Journal of Experimental Botany, 2000,51(347):1089-1097.
URL pmid: 10948236 |
[75] |
Ryan M G . Effects of climate change on plant respiration[J]. Ecological Applications, 1991,1(2):157-167.
doi: 10.2307/1941808 URL pmid: 27755662 |
[76] |
Pregitzer K S, Laskowski M J, Burton A J , et al. Variation in sugar maple root respiration with root diameter and soil depth[J]. Tree Physiology, 1998,18(10):665-670.
doi: 10.1093/treephys/18.10.665 URL pmid: 12651416 |
[77] | 段永宏 . 长白山天然水曲柳林木根系呼吸动态研究[D]. 北京:北京林业大学, 2008. |
[78] | 任军, 徐程扬, 林玉梅 , 等. 不同供氮水平下水曲柳(Fraxinus mandushurica Rupr.)幼苗根系呼吸季节动态[J]. 生态学报, 2008,29(8):4169-4178. |
[1] | 王诗雅, 冯乃杰, 项洪涛, 冯胜杰, 郑殿峰. 水分胁迫对大豆生长与产量的影响及应对措施[J]. 中国农学通报, 2020, 36(27): 41-45. |
[2] | 魏敏, 罗龙欣, 杨平华, 严庆海, 刘颖. 微肥对核技术合成保水剂性能的影响[J]. 中国农学通报, 2020, 36(24): 54-58. |
[3] | 王媛, 王庆贵, 孙元, 邢亚娟. 土壤动物生态功能与陆地生态系统各环境因子的关系[J]. 中国农学通报, 2020, 36(23): 54-59. |
[4] | 禄兴丽, 段雅欣, 岳衡, 刘继虎, 康建宏, 吴宏亮, 代晓华, 吴娜, 贾彪. 间作对作物产量效应的Meta分析[J]. 中国农学通报, 2020, 36(14): 101-106. |
[5] | 刘 超,赵光影,宋艳宇,董星丰. 气候变化背景下湿地土壤酶活性研究进展[J]. 中国农学通报, 2019, 35(33): 91-97. |
[6] | 高 翔,郝志萍,吕慧卿,刘 璋. 荞麦抗倒性研究进展[J]. 中国农学通报, 2019, 35(13): 6-11. |
[7] | 冯鹏,孙力,申晓慧,李如来,郑海燕,李志民,李增杰,姜成,郭伟. 转CpFATB 基因苜蓿后代抗寒性分析[J]. 中国农学通报, 2017, 33(9): 31-36. |
[8] | 王士强#,赵海红,赵黎明,王丽萍,王贺,顾春梅,那永光. 水稻冷害生理功能变化与调控研究进展[J]. 中国农学通报, 2017, 33(36): 1-6. |
[9] | 张鑫,邢亚娟,贾翔,王庆贵. 北方森林细根对氮沉降和二氧化碳浓度升高的响应[J]. 中国农学通报, 2017, 33(30): 84-90. |
[10] | 陈慧敏,李 威,马雄风,张 飞,杨代刚,胡守林. 植物SWEET 基因家族的相关研究进展[J]. 中国农学通报, 2017, 33(19): 34-39. |
[11] | 单文俊,王庆贵,闫国永,邢亚娟. 基于土壤微生物的碳氮互作效应:综述[J]. 中国农学通报, 2016, 32(23): 65-71. |
[12] | 张潇月,欧碧波,肖铁光. 检疫性害虫四纹豆象的胚胎发育研究[J]. 中国农学通报, 2016, 32(17): 61-66. |
[13] | 赵璞,李梦,及增发,贾银锁,马春红. 植物干旱响应生理对策研究进展[J]. 中国农学通报, 2016, 32(15): 86-92. |
[14] | 闫国永,邢亚娟,王晓春,韩士杰,王庆贵. 氮沉降对细根动态和形态特征的影响研究进展[J]. 中国农学通报, 2016, 32(15): 79-85. |
[15] | 王玉涛,戴志刚,郭丽君,张秀英,阿布都热合曼吐尔逊. 新疆野生盘羊头骨骨孔形态解剖[J]. 中国农学通报, 2015, 31(8): 1-5. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||