中国农学通报 ›› 2020, Vol. 36 ›› Issue (23): 54-59.doi: 10.11924/j.issn.1000-6850.casb20190700368
收稿日期:
2019-07-02
修回日期:
2019-11-04
出版日期:
2020-08-15
发布日期:
2020-08-13
通讯作者:
邢亚娟
作者简介:
王媛,女,1996年出生,甘肃庆阳人,硕士在读,研究方向:气候变化背景下的土壤生态系统响应。通信地址:150080 黑龙江大学农业资源与环境学院,E-mail: 基金资助:
Wang Yuan(), Wang Qinggui, Sun Yuan, Xing Yajuan(
)
Received:
2019-07-02
Revised:
2019-11-04
Online:
2020-08-15
Published:
2020-08-13
Contact:
Xing Yajuan
摘要:
本研究结合近年来国内外土壤动物的相关研究,基于前人研究的成果,在概述土壤动物多样性的基础上,详细介绍了如蚯蚓、蚂蚁和线虫、弹尾虫等不同种类且具代表性土壤动物的生态功能,以及与各环境因子如何产生相互作用关系。尽管国内外很多学者已对土壤动物多样性有诸多研究,但其生态功能及自身与不同环境因子相互影响以及如何作用还鲜有报道。故笔者归纳了土壤动物多样性、生态功能以及与自然环境因子(如大气氮(N)沉降、植被类型、土壤环境等)和人为干扰(如开垦、火烧等)因子影响下的相互作用机理,并讨论了土壤动物生态功能以及未来研究热点等,以期为更好地理解陆地生态系统中土壤动物如何在地下生态过程中发挥作用提供依据。
中图分类号:
王媛, 王庆贵, 孙元, 邢亚娟. 土壤动物生态功能与陆地生态系统各环境因子的关系[J]. 中国农学通报, 2020, 36(23): 54-59.
Wang Yuan, Wang Qinggui, Sun Yuan, Xing Yajuan. Ecological Functions of Soil Animals and Environmental Factors of Terrestrial Ecosystems: Relationship Review[J]. Chinese Agricultural Science Bulletin, 2020, 36(23): 54-59.
[1] |
Coyle D R, Nagendra U J, Taylor M K, et al. Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action[J]. Soil Biology and Biochemistry, 2017,110:116-133.
doi: 10.1016/j.soilbio.2017.03.008 URL |
[2] | 张荣祖, 王振中, 廖崇惠. 土壤动物研究方法手册[M]. 北京: 中国林业出版社, 1998: 5-9. |
[3] |
Wu H, Lu M, Lu X, et al. Interactions between earthworms and mesofauna has no significant effect on emissions of CO2 and N2O from soil[J]. Soil Biology and Biochemistry, 2015,88:294-297.
doi: 10.1016/j.soilbio.2015.06.005 URL |
[4] |
Anslan S, Bahram M, Tedersoo L. Seasonal and annual variation in fungal communities associated with epigeic springtails (Collembola spp.) in boreal forests[J]. Soil Biology & Biochemistry, 2018,116:245-252.
doi: 10.1016/j.soilbio.2017.10.021 URL |
[5] |
邵元虎, 张卫信, 刘胜杰, 等. 土壤动物多样性及其生态功能[J]. 生态学报, 2015,35(20):6614-6625.
doi: 10.5846/stxb201506021109 URL |
[6] |
Chen J, Ferris H. The effects of nematode grazing on nitrogen mineralization during fungal decomposition of organic matter[J]. Soil Biology and Biochemistry, 1999,31(9):1265-1279.
doi: 10.1016/S0038-0717(99)00042-5 URL |
[7] |
Okada H, Ferris H. Effect of temperature on growth and nitrogen mineralization of fungi and fungal-feeding nematodes[J]. Plant and Soil, 2001,234(2):253-262.
doi: 10.1023/A:1017957929476 URL |
[8] |
吴纪华, 宋慈玉, 陈家宽. 食微线虫对植物生长及土壤养分循环的影响[J]. 生物多样性, 2007,15(2):124-133.
doi: 10.1360/biodiv.050291 URL |
[9] | Coleman D C, Crossley Jr D A, Hendrix P F, Secondary production: Activities of heterotrophic organisms-the soil fauna[J]. Fundamentals of Soil Ecology. Academic Press, San Diego, California, 2004: 51-106. |
[10] |
Bossuyt H, Six J, Hendrix P F. Interactive effects of functionally different earthworm species on aggregation and incorporation and decomposition of newly added residue carbon[J]. Geoderma, 2006,130(1/2):14-25.
doi: 10.1016/j.geoderma.2005.01.005 URL |
[11] |
Wang S J, Wang H, Li JH, et al. Ants can exert a diverse effect on soil carbon and nitrogen pools in a Xishuangbanna tropical forest[J]. Soil Biology Biochemistry, 2017,113:45-52.
doi: 10.1016/j.soilbio.2017.05.027 URL |
[12] | 李同川. 黄土高原土壤大孔隙特征及其对土壤水分的影响[D]. 陕西杨凌:西北农林科技大学, 2007: 12-25. |
[13] |
Vandenbygaart AJ, Fox CA, Fallow DJ, et al. Estimating earthworm-influenced soil structure by morphometric image analysis[J]. Soil Science Society of America Journal, 2000,64:982-988.
doi: 10.2136/sssaj2000.643982x URL |
[14] | 陈元瑶, 魏琮, 贺虹, 等. 秦岭地区2种蚂蚁巢内土壤理化性质和微生物量的相关性研究[J]. 西北林学院学报, 2012,27(2):121-126. |
[15] | Ali I G, Sheridan G, French J R J. Ecological benefits of termite soil interaction and microbial symbiosis in the soil ecosystem[J]. Journal of Earth Sciences and Geotechnical Engineering, 2013,3(4):63-85. |
[16] | 聂立凯, 于政达, 孔范龙, 等. 土壤动物对土壤碳循环的影响研究进展[J]. 生态学杂志, 2019,38(3):882-890. |
[17] | 孙震. 中国土壤动物生态地理系统相关研究[J]. 环境保护与循环经济, 2018,38(8):45-48. |
[18] |
陈建秀, 麻智春, 严海娟, 等. 跳虫在土壤生态系统中的作用[J]. 生物多样性, 2007,15(2):154-161.
doi: 10.1360/biodiv.060288 URL |
[19] | Ge F, Liu X, Jiang B. Accumulation of several metals in earthworm (Eisenia foetida)[J]. Agro-environmental Protection, 2002,21(1):16-18. |
[20] | Maria Arias-Andres, Keilor Rojas-Jimenez, Hans-Peter Grossart,et al. Collateral effects of microplastic pollution on aquatic microorganisms: An ecological perspective[J]. Trac Trends in Analytical Chemistry, 2018,32(4):80-104. |
[21] |
Shao Y H, Zhang W X, Liu Z F, et al. Responses of soil microbial and nematode communities to aluminum toxicity in vegetated oil-shale-waste lands[J]. Ecotoxicology, 2012,21(8):2132-2142.
doi: 10.1007/s10646-012-0966-4 URL |
[22] | 王移, 卫伟, 杨兴中, 等. 中国土壤动物与土壤环境要素相互关系研究进展[J]. 应用生态学报, 2010,21(9):2441-2448. |
[23] |
Wissuwa J, Salamon J A, Frank T. Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in Eastern Austria[J]. Soil Biology and Biochemistry, 2012,50:96-107.
doi: 10.1016/j.soilbio.2012.02.025 URL pmid: 22761538 |
[24] |
Kardol P, Reynolds W N, Norby R J, et al. Climate change effects on soil microarthropod abundance and community structure[J]. Applied Soil Ecology, 2011,47(1):37-44.
doi: 10.1016/j.apsoil.2010.11.001 URL |
[25] |
武海涛, 吕宪国, 杨青, 等. 土壤动物主要生态特征与生态功能研究进展[J].土壤学报, 2006(2):314-323.
doi: 10.11766/trxb200504070222 URL |
[26] |
Birkhofer K, Schöning I, Alt F, et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types[J]. PLoS One, 2012,7(8):e43292.
doi: 10.1371/journal.pone.0043292 URL pmid: 22937029 |
[27] |
Song B, Yin X, Zhang Y, et al. Dynamics and relationships of Ca, Mg, Fe in litter, soil fauna and soil in Pinus koraiensis-broadleaf mixed forest[J]. Chinese geographical science, 2008,18(3):284-290.
doi: 10.1007/s11769-008-0284-1 URL |
[28] |
Butt K R, Briones M J I. Earthworms and mesofauna from an isolated, alkaline chemical waste site in Northwest England[J]. European journal of soil biology, 2017,78:43-49.
doi: 10.1016/j.ejsobi.2016.11.005 URL |
[29] |
Yan S, Singh A N, Fu S, et al. A soil fauna index for assessing soil quality[J]. Soil Biology and Biochemistry, 2012,47:158-165.
doi: 10.1016/j.soilbio.2011.11.014 URL |
[30] |
Yin X, Ma C, He H, et al. Distribution and diversity patterns of soil fauna in different salinization habitats of Songnen Grasslands, China[J]. Applied soil ecology, 2018,123:375-383.
doi: 10.1016/j.apsoil.2017.09.034 URL |
[31] |
Owojori O J, Reinecke A J, Voua-Otomo P, et al. Comparative study of the effects of salinity on life-cycle parameters of four soil-dwelling species[J]. Pedobiologia, 2009,52(6):351-360.
doi: 10.1016/j.pedobi.2008.12.002 URL |
[32] | 唐玉姝, 魏朝富, 颜廷梅, 等. 土壤质量生物学指标研究进展[J].土壤, 2007(2):157-163. |
[33] | 乔煜, 熊咏梅, 吴巧花. 广州白云山大中型土壤动物群落结构与多样性[J]. 广东园林. 2018,40(5):17-20. |
[34] | 熊燕. 热带、亚热带土壤动物群落多样性及弹尾纲系统发生的研究[D]. 上海:华东师范大学, 2005: 56-58. |
[35] | 陈国孝, 宋大祥. 暖温带北京小龙门林区土壤动物的研究[J].生物多样性, 2000(1):88-94. |
[36] |
刘任涛, 朱凡, 赵哈林. 北方农牧交错区土地利用覆盖变化对大型土壤动物群落结构的影响[J]. 草地学报, 2013,21(4):643-649.
doi: 10.11733/j.issn.1007-0435.2013.04.003 URL |
[37] | 李红月, 殷秀琴, 马辰, 等. 长白山地丘陵区不同土地利用方式土壤动物群落生态分布特征[J]. 土壤学报, 2017,54(4):1018-1028. |
[38] |
林英华, 贾旭东, 徐演鹏, 等. 大兴安岭典型森林沼泽类型地表土壤动物群落与生态位分析[J]. 林业科学, 2015,51(12):53-62.
doi: 10.11707/j.1001-7488.20151207 URL |
[39] |
Wu P, Liu S, Liu X. Composition and spatio-temporal changes of soil macroinvertebrates in the biodiversity hotspot of northern Hengduanshan Mountains, China[J]. Plant and soil, 2012,357(1/2):321-338.
doi: 10.1007/s11104-012-1166-y URL |
[40] |
Wu P, Liu X, Liu S, Wang J, et al. Composition and spatio -temporal variation of soil microarthropods in the biodiversity hotspot of northern Hengduan Mountains[J]. European Journal of Soil Biology, 2014,62:30-38.
doi: 10.1016/j.ejsobi.2014.02.013 URL |
[41] |
Wu P, Wang C. Differences in spatiotemporal dynamics between soil macrofauna and mesofauna communities in forest ecosystems: The significance for soil fauna diversity monitoring[J]. Geoderma, 2019,337:266-272.
doi: 10.1016/j.geoderma.2018.09.031 URL |
[42] |
Frouz J. Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization[J]. Geoderma, 2018,332:161-172.
doi: 10.1016/j.geoderma.2017.08.039 URL |
[43] | 单颖, 赵凤亮, 林艳, 等. 蚯蚓粪对土壤环境质量和作物生长影响的研究现状与展望[J]. 热带农业科学, 2017,37(6):11-17. |
[44] |
Endlweber K, Scheu S. Interactions between mycorrhizal fungi and Collembola: Effects on root structure of compe-ting plant species[J]. Biology and Fertility of Soils, 2007,43:741-749.
doi: 10.1007/s00374-006-0157-7 URL |
[45] |
吴纪华, 宋慈玉, 陈家宽. 食微线虫对植物生长及土壤养分循环的影响[J]. 生物多样性, 2007,15(2):124-133.
doi: 10.1360/biodiv.050291 URL |
[46] | 邓晓保, 邹寿青, 付先惠, 等. 西双版纳热带雨林不同土地利用方式对土壤动物个体数量的影响[J]. 生态学报, 2003,23(1):130-138. |
[47] | 何振. 南方不同森林类型土壤节肢动物多样性研究[D]. 北京:中国林业科学研究院, 2018: 32-45. |
[48] | 寇新昌, 殷秀琴. 长白山地不同次生林土壤动物群落多样性特征及其分布格局[J]. 山地学报, 2017,35(4):429-436. |
[49] |
Baldrian P. Forest micro-biome: diversity, complexity and dynamics[J]. FEMS microbiology reviews, 2017,41:109-130.
doi: 10.1093/femsre/fuw040 URL pmid: 27856492 |
[50] |
Andres Fuentes-Ramirez, Marcia Barrientos, Leonardo Almonacid, et al. Short-term response of soil microorganisms, nutrients and plant recovery in fire-affected Araucaria araucana forests[J]. Applied Soil Ecology, 2018,131:99-106.
doi: 10.1016/j.apsoil.2018.08.010 URL |
[51] |
Zaitsev A S, Gongalsky K B, Malmström A, et al. Why are forest fires generally neglected in soil fauna research? A mini-review[J]. Applied soil ecology, 2016,98:261-271.
doi: 10.1016/j.apsoil.2015.10.012 URL |
[52] | 赵乌英嘎, 红梅, 赵巴音那木拉,等.不同耕作方式下黑土区农田中小型土壤动物群落特征[J]. 水土保持通报, 2019,39(3):39-45. |
[53] |
朱新玉, 朱波. 不同施肥方式对紫色土农田土壤动物主要类群的影响[J]. 中国农业科学, 2015,48(5):911-920.
doi: 10.3864/j.issn.0578-1752.2015.05.09 URL |
[54] | 吴廷娟. 全球变化对土壤动物多样性的影响[J]. 应用生态学报, 2013,24(2):581-588. |
[55] |
Sun X, Zhang X, Zhang S, et al. Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest[J]. PloS one, 2013,8(12):e82468.
doi: 10.1371/journal.pone.0082468 URL pmid: 24324794 |
[56] | 徐国良, 莫江明, 周国逸, 等. N沉降下土壤动物群落的响应:1年研究结果总述[J].北京林业大学学报, 2006(3):1-7. |
[57] | 宋敏. 增加降水及施氮对弃耕草地土壤线虫和小型节肢动物的影响[J]. 生态学杂志, 2017,36(3):631-639. |
[58] |
Thakur M P, Del Real I M, Cesarz S, et al. Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation[J]. Soil Biology and Biochemistry, 2019,135:184-193.
doi: 10.1016/j.soilbio.2019.04.020 URL |
[59] | 陈展彦, 武海涛, 王云彪, 等. 基于稳定同位素的湿地食物源判定和食物网构建研究进展[J]. 应用生态学报, 2017,28(7):2389-2398. |
[60] |
Donn S, Neilson R, Griffiths B S, et al. A novel molecular approach for rapid assessment of soil nematode assemblages-variation, validation and potential applications[J]. Methods in Ecology and Evolution, 2012,3(1):12-23.
doi: 10.1111/j.2041-210X.2011.00145.x URL |
[1] | 杨琪雪, 潘换换, 吴树荣, 杜自强, 张红, 武志涛. 基于GIS的山西省煤田生态环境敏感性评价[J]. 中国农学通报, 2022, 38(3): 59-66. |
[2] | 王金林, 闻禄, 陈平, 张德全, 田永, 曾婕, 杨峥. 长期不同施肥对茶园土壤pH、茶叶产量可持续性和品质的影响[J]. 中国农学通报, 2021, 37(8): 84-88. |
[3] | 符慧娟, 李星月, 杨武云, 李其勇, 魏会廷, 易军, 张鸿. 不同种子包衣剂对小麦产量及根际土壤的影响[J]. 中国农学通报, 2021, 37(3): 31-35. |
[4] | 刘高远, 和爱玲, 杜君, 杨占平, 潘秀燕, 许纪东, 张玉亭. 豫南砂姜黑土区玉米新型肥料的应用效果分析[J]. 中国农学通报, 2021, 37(29): 78-83. |
[5] | 唐健, 赵隽宇, 覃祚玉, 王会利, 石媛媛. 中红外光谱技术在土壤环境研究中的进展综述[J]. 中国农学通报, 2021, 37(11): 122-127. |
[6] | 贺国强, 王盼盼, 高远, 卢晓华, 曹亚凡, 赵冬雪, 王晶英. 寒地绿肥与烤烟套种对烤烟生长及经济性状的影响[J]. 中国农学通报, 2020, 36(7): 37-43. |
[7] | 邱荟圆, 李博, 祖艳群. 土壤环境基准的研究和展望[J]. 中国农学通报, 2020, 36(18): 67-72. |
[8] | 王子臣,王鑫,张岳芳,郭智,盛婧,郑建初. 沼液COD对黄瓜幼苗生长及土壤环境因子的影响[J]. 中国农学通报, 2019, 35(4): 15-22. |
[9] | 木合塔尔.艾买提. 喀什噶尔河-叶尔羌河流域粮食作物生态功能评价及生态补偿探讨[J]. 中国农学通报, 2019, 35(23): 78-83. |
[10] | 伍一宁,钟海秀,王贺,许楠,李金博,付晓宇,邹红菲. 基于文献计量的土壤动物发展研究现状与趋势1)[J]. 中国农学通报, 2018, 34(9): 74-80. |
[11] | 徐识溥,刘勇,李双喜,郑宪清,吕卫光,王运圣. 基于农业物联网的农田土壤环境监测系统的研究与设计[J]. 中国农学通报, 2018, 34(23): 145-150. |
[12] | 胡丽燕,李 馨,戴传超. 广谱植物内生真菌枫香拟茎点霉生态功能的研究进展[J]. 中国农学通报, 2017, 33(9): 48-57. |
[13] | 匡岗,王欢欢,李德育,李树峰,王博,元野,刘国顺,任天宝. 腐殖酸钾对豫西地区烤烟品质及土壤环境的影响[J]. 中国农学通报, 2017, 33(33): 60-66. |
[14] | 黄红英,刘静华,王福刚,李 栋. 重金属污染土壤不同修复处理后的土壤动物群落结构特征[J]. 中国农学通报, 2017, 33(21): 108-113. |
[15] | 吕 川,陈明辉. 典型黑土区土壤环境质量综合评价指标体系与分区管理对策研究[J]. 中国农学通报, 2016, 32(8): 108-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||