| [1] | 郭德栋, 康传红, 刘丽萍 . 异源三倍体甜菜(VVC)无融合生殖的研究[J]. 中国农业科学, 1999,32(40):1-5. | 
																													
																						| [2] | 于冰, 李海英, 郭德栋 , 等. 甜菜无融合生殖系花期差异表达基因cDNA文库的构建[J]. 高技术通讯, 2006,16(9):954-957. | 
																													
																						| [3] | 郭德栋, 刘丽萍, 康传红 , 等. 甜菜无融合生殖单体附加系的繁殖传递特性[J]. 黑龙江大学自然科学学报, 2001,18(3):104-107. | 
																													
																						| [4] | Li H, Pan Y, Zhang Y , et al. Salt stress response of membrane proteome of sugar beet monosomic addition line M14[J]. Journal of Proteomics, 2015,127:18-33. doi: 10.1016/j.jprot.2015.03.025    
																																					URL
 | 
																													
																						| [5] | Wu C, Ma C, Pan Y . Sugar beet M14 glyoxalaseⅠgene can enhance plant tolerance to abiotic stresses[J]. Journal of Plant Research, 2013,126(3):415-425. doi: 10.1007/s10265-012-0532-4    
																																					URL
 | 
																													
																						| [6] | Wang Y, Zhan Y, Wu C , et al. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance[J]. Plant Science, 2012,191-192(4):93-99. doi: 10.1016/j.plantsci.2012.05.001    
																																					URL
 | 
																													
																						| [7] | Zhu J . Abiotic stress signaling and responses in plants[J]. Cell, 2016,167(2):313-324. doi: 10.1016/j.cell.2016.08.029    
																																					URL
 | 
																													
																						| [8] | Sun X, Yu Q, Tang L , et al. GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress[J]. Journal of Plant Physiology, 2013,170(5):505-515. doi: 10.1016/j.jplph.2012.11.017    
																																					URL
 | 
																													
																						| [9] | Li J, Cai W , et al. A ginseng PgTIP1 gene whose protein biological activity related to Ser128 residue confers faster growth and enhanced salt stress tolerance in Arabidopsis[J]. Plant Science, 2015,234:74-85. doi: 10.1016/j.plantsci.2015.02.001    
																																					URL
 | 
																													
																						| [10] | Gong D, Guo Y, Jagendorf A T , et al. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance[J]. Plant Physiology, 2002,130(1):256. doi: 10.1104/pp.004507    
																																					URL
 | 
																													
																						| [11] | 裴丽丽, 郭玉华, 徐兆师 , 等. 植物逆境胁迫相关蛋白激酶的研究进展[J]. 西北植物学报, 2012,32(5):1052-1061. | 
																													
																						| [12] | 朱婷婷, 王彦霞, 裴丽丽 , 等. 植物蛋白激酶与作物非生物胁迫抗性的研究[J]. 植物遗传资源学报, 2017,18(4):763-770. | 
																													
																						| [13] | Liu Z, Jia Y, Ding Y , et al. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response[J]. Molecular Cell, 2017,66(1):117-128. doi: 10.1016/j.molcel.2017.02.016    
																																					URL
 | 
																													
																						| [14] | Yang L, Zhang Y, Zhu N , et al. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14[J]. Journal of Proteome Research, 2013,12(11):4931-4950. doi: 10.1021/pr400177m    
																																					URL
 | 
																													
																						| [15] | 端木慧子, 牛志新, 李海英 . 甜菜STPK家族鉴定及蛋白互作网络分析[J]. 中国糖料, 2018,40(06):8-10. | 
																													
																						| [16] | Meng L S, Wang Y B, Yao S Q , et al. Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8[J]. Journal of Cell Science, 2015,128(15):2919. doi: 10.1242/jcs.172072    
																																					URL
 | 
																													
																						| [17] | Ma L, Ye J, Yang Y , et al. The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress[J]. Developmental Cell, 2019,48(5):697-709. doi: 10.1016/j.devcel.2019.02.010    
																																					URL
 | 
																													
																						| [18] | Pareek A, Khurana A, Sharma A K , et al. An overview of signaling regulons during cold stress tolerance in plants[J]. Current Genomics, 2016,18(999). | 
																													
																						| [19] | Tomioka M, Shimobayashi M, Kitabatake M , et al. Ribosomal protein uS7/Rps5 serine-223 in protein kinase-mediated phosphorylation and ribosomal small subunit maturation[J]. Scientific Reports, 2018,8(1):1244. doi: 10.1038/s41598-018-19652-z    
																																					URL
 | 
																													
																						| [20] | Liu J, Guo Y . The alkaline tolerance in Arabidopsis requires stabilizing microfilament partially through inactivation of PKS5 kinase[J]. Journal of Genetics and Genomics, 2011,38(7):307-313. doi: 10.1016/j.jgg.2011.05.006    
																																					URL
 | 
																													
																						| [21] | Huang K, Peng L, Liu Y , et al. Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response[J]. Biochemical and Biophysical Research Communications, 2017,498(1). | 
																													
																						| [22] | Sarabi B, Fresneau C, Ghaderi N , et al. Stomatal and non-stomatal limitations are responsible in down-regulation of photosynjournal in melon plants grown under the saline condition: Application of carbon isotope discrimination as a reliable proxy[J]. Plant physiology and biochemistry, 2019,141:1-19. doi: 10.1016/j.plaphy.2019.05.010    
																																					URL
 | 
																													
																						| [23] | 何亚飞, 李霞, 谢寅峰 . Rubisco与Rubisco活化酶的分子机理研究进展[J]. 分子植物育种, 2017,15(8):3295-3301. | 
																													
																						| [24] | 陈候鸣, 陈跃, 王盾 , 等. 核酮糖-1,5-二磷酸羧化酶/加氧酶活化酶在植物抗逆性中的作用[J]. 植物生理学报, 2016,52(11):1637-1648. |