中国农学通报 ›› 2020, Vol. 36 ›› Issue (33): 102-107.doi: 10.11924/j.issn.1000-6850.casb20191100870
所属专题: 生物技术
董春燕(), 梁卫红, 程辉, 于东明, 吕东, 孙炎锋, 苗琛(
)
收稿日期:
2019-11-24
修回日期:
2019-12-18
出版日期:
2020-11-25
发布日期:
2020-11-18
通讯作者:
苗琛
作者简介:
董春燕,女,1995年出生,河南驻马店人,在读硕士研究生,研究方向:植物生理与分子生物学。通信地址:475004 河南省开封市金明大道北段 河南大学棉花生物学重点实验室,E-mail: 基金资助:
Dong Chunyan(), Liang Weihong, Cheng Hui, Yu Dongming, Lv Dong, Sun Yanfeng, Miao Chen(
)
Received:
2019-11-24
Revised:
2019-12-18
Online:
2020-11-25
Published:
2020-11-18
Contact:
Miao Chen
摘要:
脂氧合酶(Lipoxygenase, LOX)催化多不饱和脂肪酸加氧反应,进一步通过酶促或非酶促途径生成氧脂素(oxylipins)从而参与调节生长发育、胁迫应答等过程。为了深入了解脂氧合酶在植物应答逆境胁迫中的功能和作用机制,本研究归纳了近期在拟南芥、玉米等模式植物和作物中LOX在生物胁迫和非生物胁迫应答中功能相关研究进展,揭示了LOX家族成员在应答机械伤害、干旱、盐害等非生物胁迫和黄萎病、黄曲霉菌感染、线虫入侵、蚜虫咬食等生物胁迫中的功能,分析了各成员在胁迫应答过程中的分工合作甚至拮抗作用,以及13-LOX途径与9-LOX途径的“对话”,指出LOX活性、转录表达的调节是氧脂素合成和胁迫应答调控的重要组成部分,是潜在的作物遗传改良靶位点。LOX表达调控、作用机制以及脂氧合酶途径下游一系列代谢产物的鉴定和详细研究是未来该领域研究的重点。
中图分类号:
董春燕, 梁卫红, 程辉, 于东明, 吕东, 孙炎锋, 苗琛. 植物脂氧合酶在逆境胁迫应答中功能研究进展[J]. 中国农学通报, 2020, 36(33): 102-107.
Dong Chunyan, Liang Weihong, Cheng Hui, Yu Dongming, Lv Dong, Sun Yanfeng, Miao Chen. Plant Lipoxygenases: Advance of the Function in Stress Response[J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 102-107.
[1] |
Feussner I, Wasternack C. The lipoxygenase pathway[J]. Annual review of Plant Biology, 2002,53(1):275-297.
doi: 10.1146/annurev.arplant.53.100301.135248 URL |
[2] |
Wasternack C, Feussner I. The Oxylipin Pathways: Biochemistry and Function[J]. Annual review of Plant Biology, 2018,69(1):363-386.
doi: 10.1146/annurev-arplant-042817-040440 URL |
[3] |
Mosblech A, Feussner I, Heilmann I. Oxylipins: structurally diverse metabolites from fatty acid oxidation[J]. Plant Physiology and Biochemistry, 2009,47(6):511-517.
URL pmid: 19167233 |
[4] |
Sigal E, Laughton C W, Mulkins M A. Oxidation, lipoxygenase, and atherogenesis[J]. Annals of the New York Academy of Sciences, 1994,714(1):211-224.
doi: 10.1111/nyas.1994.714.issue-1 URL |
[5] |
Tsitsigiannis D I, Keller N P. Oxylipins as developmental and host-fungal communication signals[J]. Trends in Microbiology, 2007,15(3):109-118.
doi: 10.1016/j.tim.2007.01.005 URL pmid: 17276068 |
[6] | 曹嵩晓, 张冲, 汤雨凡, 等. 植物脂氧合酶蛋白特性及其在果实成熟衰老和逆境胁迫中的作用[J]. 植物生理学报, 2014,50(8):1096-1108. |
[7] |
León-Morcillo R J, Ángel J, Martín-Rodríguez, et al. Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in Tomato and its regulation by jasmonate signalling[J]. Journal of Experimental Botany, 2012,63(10):3545-3558.
doi: 10.1093/jxb/ers010 URL |
[8] |
Savchenko T, Kolla V A, Wang C Q, et al. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought[J]. Plant Physiology, 2014,164(3):1151-1160.
URL pmid: 24429214 |
[9] |
Liu X, Li F, Tang J, et al. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice[J]. PLoS One, 2012,7(11):e50089.
doi: 10.1371/journal.pone.0050089 URL pmid: 23209649 |
[10] |
Scala A, Mirabella R, Mugo C, et al. E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis[J]. Frontiers in Plant Science, 2013,4:74.
doi: 10.3389/fpls.2013.00074 URL pmid: 23630530 |
[11] |
Alexander G. Recent developments in biochemistry of the plant lipoxygenase pathway[J]. Progress in Lipid Research, 1998,37(5):317-352.
doi: 10.1016/s0163-7827(98)00014-9 URL pmid: 10209652 |
[12] |
Tangy F, Zhang C, Cao S X, et al. The effect of CmLOXs on the production of volatile organic compounds in four aroma types of Melon (Cucumis melo)[J]. PLoS One, 2015,10(11):e0143567.
doi: 10.1371/journal.pone.0143567 URL pmid: 26599669 |
[13] |
Zhang C, Cao S, Jin Y, et al. Melon13-lipoxygenase CmLOX18 may be involved in C6 volatiles biosynjournal in fruit[J]. Scientific Reports, 2017,7(1):2816.
doi: 10.1038/s41598-017-02559-6 URL pmid: 28588227 |
[14] |
Shen J, Tieman D, Jones J B, et al. A 13-lipoxygenase, TomloxC, is essential for synjournal of C5 flavour volatiles in tomato[J]. Journal of Experimental Botany, 2014,65(2):419-428.
doi: 10.1093/jxb/ert382 URL |
[15] |
Meng K, Hou Y L, Han Y, et al. Exploring the Functions of 9-Lipoxygenase (DkLOX3) in Ultrastructural Changes and Hormonal Stress Response during Persimmon Fruit Storage[J]. International Journal of Molecular Sciences, 2017,18(3):589.
doi: 10.3390/ijms18030589 URL |
[16] | Oenel A, Fekete A, Krischke M, et al. Enzymatic and Non-Enzymatic Mechanisms Contribute to Lipid Oxidation During Seed Aging[J]. Plant and Cell Physiology, 2017,2058(5):925-933. |
[17] |
Chauvin A, Caldelari D, Wolfender J L, et al. Four 13-lipoxygenases contribute to rapid jasmonate synjournal in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals[J]. The New Phytologist. 2013,197(2):566-575.
doi: 10.1111/nph.12029 URL pmid: 23171345 |
[18] | Debora G, Adeline C, Ivan F A, et al. Axial and Radial Oxylipin Transport[J]. Plant Physiololy, 2015,169(3):2244-2254. |
[19] |
Farmer E E, Gasperini D, Acosta I F, et al. The squeeze cell hypojournal for the activation of jasmonate synjournal in response to wounding[J]. The New Phytologist, 2014,204(2):282-288.
doi: 10.1111/nph.12897 URL pmid: 25453132 |
[20] |
Mazur R, Trzcinska-Danielewicz J, Kozlowski P, et al. Dark-chilling and subsequent photo-activation modulate expression and induce reversible association of chloroplast lipoxygenase with thylakoid membrane in runner bean (Phaseolus coccineus L.)[J]. Plant Physiology and Biochemistry, 2018,122:102-112.
doi: 10.1016/j.plaphy.2017.11.015 URL pmid: 29207281 |
[21] |
Yan L, Zhai Q, Wei J, et al. Role of tomato lipoxygenase D in wound-induced jasmonate biosynjournal and plant immunity to insect herbivores[J]. PLoS Genetics, 2013,9(12):e1003964.
doi: 10.1371/journal.pgen.1003964 URL pmid: 24348260 |
[22] | 王俊斌, 李明, 丁博, 等. 茉莉酸甲酯诱导保卫细胞气孔关闭的信号转导机制[J]. 中国细胞生物学学报, 2013,35(2):224-228. |
[23] |
Sun Y F, Lv D, Wang W, et al. Lipoxygenase 2 functions in exogenous nitric oxide-induced stomatal closure in Arabidopsis thaliana[J]. Functional Plant Biology, 2015,42(11):1019.
URL pmid: 32480741 |
[24] |
Maynard D, Groger H, Dierks T, et al. The function of the oxylipin 12-oxophytodienoic acid in cell signaling, stress acclimation, and development[J]. Journal of Experimental Botany, 2018,69(22):5341-5354.
doi: 10.1093/jxb/ery316 URL pmid: 30169821 |
[25] |
Grebner W, Stingl N E, Oenel A, et al. Lipoxygenase6-dependent oxylipin synjournal in roots is required for abiotic and biotic stress resistance of Arabidopsis[J]. Plant Physiology, 2013,161(4):2159-2170.
URL pmid: 23444343 |
[26] |
Kim J, To T, Matsui A, et al. Acetate-mediated novel survival strategy against drought in plants[J]. Nature Plants, 2017,3:17097.
URL pmid: 28650429 |
[27] |
Hou Y, Meng K, Han Y, et al. The persimmon 9-lipoxygenase gene DkLOX3 plays positive roles in both promoting senescence and enhancing tolerance to abiotic stress[J]. Frontiers in Plant Science, 2015,6:1073.
URL pmid: 26697033 |
[28] |
Lim C W, Han S W, Hwang I S, et al. The Pepper Lipoxygenase CaLOX1 Plays a Role in Osmotic, Drought and High Salinity Stress Response[J]. Plant & Cell Physiology, 2015,56(5):930-942.
URL pmid: 25657344 |
[29] |
Zhao Y, Dong W, Zhang N B, et al. A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling[J]. Plant Physiology, 2014,164(2):1068-1076.
URL pmid: 24326670 |
[30] |
Qiu Z B, Guo J L, Zhu A J, et al. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress[J]. Ecotoxicology and Environmental Safety, 2014,104:202-208.
doi: 10.1016/j.ecoenv.2014.03.014 URL pmid: 24726929 |
[31] |
Yuan F, Liang X, Li Y, et al. Methyl jasmonate improves tolerance to high salt stress in the recretohalophyte Limonium bicolor[J]. Functional Plant Biology, 2018,46(1):82-92.
URL pmid: 30939260 |
[32] |
Tasir S P, M. Iqbal R.K, Naser A A, et al. Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters[J]. Environmental and Experimental Botany, 2018,145:104-120.
doi: 10.1016/j.envexpbot.2017.11.004 URL |
[33] |
Ding H, Lai J, Wu Q, et al. Jasmonate complements the function of Arabidopsis lipoxygenase3 in salinity stress response[J]. Plant Science, 2016,244:1-7.
doi: 10.1016/j.plantsci.2015.11.009 URL pmid: 26810448 |
[34] |
Rossel J B, Wilson P B, Hussain D, et al. Systemic and intracellular responses to photo-oxidative stress in Arabidopsis[J]. Plant Cell, 2007,19(12):4091-4110.
doi: 10.1105/tpc.106.045898 URL pmid: 18156220 |
[35] |
Zhao Y, Zhou J, Xing D. Phytochrome B-mediated activation of lipoxygenase modulates an excess red light-induced defence response in Arabidopsis[J]. Journal of Experimental Botany, 2014,65(17):4907-4018.
URL pmid: 24916071 |
[36] |
Hu Y, Jiang L, Wang F, Yu D. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor 1 cascade and freezing tolerance in Arabidopsis[J]. Plant Cell, 2013,25(8):2907-2924.
doi: 10.1105/tpc.113.112631 URL pmid: 23933884 |
[37] |
Yan Y, Christensen S, Isakeit T, et al. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in Maize development and defense[J]. Plant Cell, 2012,24:1420-1436.
URL pmid: 22523204 |
[38] |
Christensen S A, Nemchenko A, Park Y S, et al. The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in Maize[J]. Molecular plant-microbe interactions, 2014,27(11):1263-1276.
doi: 10.1094/MPMI-06-13-0184-R URL pmid: 25122482 |
[39] |
Gao X, Starr J, Gobel C, et al. Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes[J]. Molecular Plant-Microbe Interaction, 2008,21(1):98-109.
doi: 10.1094/MPMI-21-1-0098 URL |
[40] |
Battilani P, Lanubile A, Scala V, et al. Oxylipins from both pathogen and host antagonize jasmonic acid-mediated defence via the 9-lipoxygenase pathway in Fusarium verticillioides infection of Maize[J]. Molecular Plant Pathology, 2018,19(9):2162-2176.
doi: 10.1111/mpp.12690 URL pmid: 29660236 |
[41] |
Valentina M, Adriano M, Alexandra M, et al. Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes[J]. Journal of Plant Physiology, 2015,188:9-18.
doi: 10.1016/j.jplph.2015.09.003 URL pmid: 26398628 |
[42] | Burow G B, Gardner H W, Keller N P. A peanut seed lipoxygenase responsive to Aspergillus colonization[J]. Plant Molecule Biology, 2000,42(5):689-701. |
[43] |
Dimitrios I T, Susan K, David K W, et al. Aspergillus infection inhibits the expression of peanut 13S-HPODE-forming seed lipoxygenases[J]. Molecular Plant-Microbe Interaction, 2005,18(10):1081-1089.
doi: 10.1094/MPMI-18-1081 URL |
[44] |
Müller V, Amé Mv, Carrari V, et al. Lipoxygenase Activation in Peanut Seed Cultivars Resistant and Susceptible to Aspergillus parasiticus Colonization[J]. Phytopathology, 2014,104(12):1340-1348.
doi: 10.1094/PHYTO-12-13-0338-R URL pmid: 24941329 |
[45] |
Song H, Wang P F, Li C S, et al. Identification of lipoxygenase (LOX) genes from legumes and their responses in wild type and cultivated peanut upon Aspergillus flavus infection[J]. Scientific Reports, 2016,6:35245.
URL pmid: 27731413 |
[46] |
Tang J D, Perkins A, Williams W P, et al. Using genome-wide associations to identify metabolic pathways involved in maize aflatoxin accumulation resistance[J]. BMC genomics, 2015,16:1.
doi: 10.1186/1471-2164-16-1 URL pmid: 25553907 |
[47] |
Ogunola O F, Hawkins L K, Mylroie E, et al. Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance[J]. PLoS One 2017,12(7):e0181265.
doi: 10.1371/journal.pone.0181265 URL pmid: 28715485 |
[48] |
Ozalvo R, Cabrera J, Escobar C, et al. Two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, reveal distinct functions in response to plant-parasitic nematode infection[J]. Molecular Plant Pathology, 2014,15(4):319-332.
doi: 10.1111/mpp.12094 URL pmid: 24286169 |
[49] |
Gleason C, Leelarasamee N, Meldau D, et al. OPDA has key role in regulating plant susceptibility to the root-knot nematode meloidogyne hapla in Arabidopsis[J]. Frontiers in Plant Science, 2016,7:1565.
doi: 10.3389/fpls.2016.01565 URL pmid: 27822219 |
[50] |
Vamsi J N, Jantana K, Sujon S, et al. Root-derived oxylipins promote green peach aphid performance on Arabidopsis foliage[J]. Plant Cell, 2012,24(4):1643-1653.
URL pmid: 22474183 |
[51] |
Losvik A, Beste L, Glinwood R, et al. Overexpression and Down-Regulation of Barley Lipoxygenase LOX2.2 Affects Jasmonate-Regulated Genes and Aphid Fecundity[J]. International Journal of Molecular Sciences, 2017,18(12):2765.
doi: 10.3390/ijms18122765 URL |
[52] |
Christensen S A, Nemchenko A, Borrego E, et al. The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack[J]. Plant Journal, 2013,74(1):59-73.
doi: 10.1111/tpj.12101 URL pmid: 23279660 |
[53] |
Woldemariam M G, Ahern K, Jander G. A role for 9-lipoxygenases in maize defense against insect herbivory[J]. Plant Signaling & Behavior, 2018,13(1):e1422462.
doi: 10.1080/15592324.2017.1422462 URL pmid: 29293391 |
[54] |
Marcos R, Izquierdo Y, Vellosillo T, et al. 9-Lipoxygenase-Derived Oxylipins Activate Brassinosteroid Signaling to Promote Cell Wall-Based Defense and Limit Pathogen Infection[J]. Plant Physiology, 2015,169(3):2324-2334.
URL pmid: 26417008 |
[55] |
Montillet J L, Leonhardt N, Mondy S, et al. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis [J]. PLoS Biology, 2013,11(3):e1001513.
doi: 10.1371/journal.pbio.1001513 URL pmid: 23526882 |
[56] |
Christensen S, Huffaker A, Kaplan F, et al. Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(36):11407-11412.
doi: 10.1073/pnas.1511131112 URL pmid: 26305953 |
[57] |
Wang K D, Borrego E J, Kenerley C M, et al. Oxylipins other than jasmonic acid are xylem-resident signals regulating systemic resistance induced by trichoderma virens in Maize[J]. Plant Cell, 2019, doi: 10.1105/tpc.19.00487.
doi: 10.1105/tpc.20.00304 URL pmid: 33037145 |
[1] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[2] | 孙彬, 王芳, 杨雨春, 王君, 陆志民, 董广志, 史婉玲. 水曲柳研究进展[J]. 中国农学通报, 2022, 38(29): 74-79. |
[3] | 谢道龙, 谭智, 李虹烨, 付小侠, 王帆, 刘晓霞, 覃佐东, 何福林, 骆鹰. 银杏GbASR基因的克隆、生物信息学及表达分析[J]. 中国农学通报, 2021, 37(32): 34-41. |
[4] | 郝小聪, 王伟伟, 张风廷, 孙瑞, 房兆峰, 柳珊, 曹志琛, 朱文根, 赵昌平, 汪德州, 唐益苗. 小麦TaHPPR基因的克隆与表达分析[J]. 中国农学通报, 2021, 37(3): 129-138. |
[5] | 姜雪雍, 岳元春, 孙养存, 高冬妮, 平文祥, 葛菁萍. 副干酪乳杆菌与芽孢杆菌属共培养种间关系对产细菌素的影响[J]. 中国农学通报, 2021, 37(24): 124-132. |
[6] | 高忠奎, 蒋菁, 韩柱强, 黄志鹏, 熊发前, 唐秀梅, 吴海宁, 钟瑞春, 刘菁, 唐荣华, 贺梁琼. CRISPR/Cas9系统及其在粮油作物遗传改良中的研究进展[J]. 中国农学通报, 2021, 37(20): 26-34. |
[7] | 马悦, 于冰. nsLTPs基因参与植物逆境胁迫应答的研究进展[J]. 中国农学通报, 2021, 37(18): 95-101. |
[8] | 徐亚楠, 孙夏, 赵海朋, 薛明. 防御信号途径在B型烟粉虱取食烟草诱导抗蚜防御中的作用[J]. 中国农学通报, 2020, 36(36): 93-99. |
[9] | 邹锋康, 贾海伦, 丁广洲, 陈丽. 甜菜磷脂酰肌醇转运蛋白基因SbSEC14的克隆及低温胁迫下的表达分析[J]. 中国农学通报, 2020, 36(32): 39-48. |
[10] | 王爽, 李海英. 植物E3泛素连接酶与非生物胁迫相关研究进展[J]. 中国农学通报, 2020, 36(29): 47-53. |
[11] | 刘静妍, 闫双勇, 张融雪, 苏京平, 孙玥, 孙林静. 水稻耐低温研究重要进展[J]. 中国农学通报, 2020, 36(27): 1-5. |
[12] | 王琼, 郭毅晶, 康琳, 张少颖, 于有伟, 宋小青. 一氧化碳(CO)在植物体内的生理生化作用研究进展[J]. 中国农学通报, 2020, 36(12): 86-90. |
[13] | 李其勇,李星月,朱从桦,向运佳,杨晓蓉,张鸿. 杂草稻的竞争优势及耐逆性研究进展[J]. 中国农学通报, 2019, 35(31): 115-123. |
[14] | 段硕楠,李国良,张园园,郭秀林. 植物热激转录因子家族的多样性和复杂性[J]. 中国农学通报, 2018, 34(35): 36-43. |
[15] | 王友超,王娅丽,张一桐,杨泽众,刘春光,付海燕,杨峰山. 外源MeJA诱导玉米抗性对亚洲玉米螟生物学特性的影响[J]. 中国农学通报, 2018, 34(35): 98-104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||