中国农学通报 ›› 2021, Vol. 37 ›› Issue (24): 124-132.doi: 10.11924/j.issn.1000-6850.casb2020-0724
姜雪雍1,2(), 岳元春1, 孙养存1,2, 高冬妮1,2, 平文祥1,2, 葛菁萍1,2()
收稿日期:
2020-11-30
修回日期:
2020-12-28
出版日期:
2021-08-25
发布日期:
2021-08-27
通讯作者:
葛菁萍
作者简介:
姜雪雍,女,1996年出生,黑龙江佳木斯人,硕士,研究方向:微生物资源挖掘与利用。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号224信箱 黑龙江大学生命科学学院,Tel:0451-86609016,E-mail: 基金资助:
Jiang Xueyong1,2(), Yue Yuanchun1, Sun Yangcun1,2, Gao Dongni1,2, Ping Wenxiang1,2, Ge Jingping1,2()
Received:
2020-11-30
Revised:
2020-12-28
Online:
2021-08-25
Published:
2021-08-27
Contact:
Ge Jingping
摘要:
为使芽孢杆菌属与副干酪乳杆菌(Lactobacillus paracasei)通过种间信息交流形成稳定的小生态环境,加大芽孢杆菌属的初始接种量,来探究L. paracasei HD1.7与其共培养的生态学关系。结果表明,将枯草芽孢杆菌(Bacillus subtilis)与L. paracasei HD1.7以5%:1%的初始接种比例共培养,L. paracasei HD1.7所产细菌素为其单培养的1.21倍,群体感应相关基因luxS,prcK和prcR分别上调表达3.14、4.98和5.41倍。同时,B. subtilis形成更多的芽孢以回避细菌素的攻击,芽孢形成相关基因spo0A,sigE,sigF和sigG分别上调2.37、2.71、3.15和2.56倍。此时,二者形成了一种协同合作的生态关系。冗余分析结果表明,共培养体系中与细菌素产生关系最为密切的是芽孢数量、培养时间以及B. subtilis活菌数。L. paracasei HD1.7与芽孢杆菌属之间存在不同的生态关系,有与之共培养后对L. paracasei HD1.7偏利的芽孢杆菌,也存在对其偏害的芽孢杆菌。
中图分类号:
姜雪雍, 岳元春, 孙养存, 高冬妮, 平文祥, 葛菁萍. 副干酪乳杆菌与芽孢杆菌属共培养种间关系对产细菌素的影响[J]. 中国农学通报, 2021, 37(24): 124-132.
Jiang Xueyong, Yue Yuanchun, Sun Yangcun, Gao Dongni, Ping Wenxiang, Ge Jingping. Interspecific Relationship of Lactobacillus paracasei Co-cultured with Bacillus sp. Affects Bacteriocin Production[J]. Chinese Agricultural Science Bulletin, 2021, 37(24): 124-132.
比例/时间 | 0h | 4h | 8h | 12h | 24h | 36h | 48h | 60h |
---|---|---|---|---|---|---|---|---|
3%:1% | 1.750 | 0.875 | 2.000 | 5.923 | 8.250 | 3.682 | 1.724 | 2.563 |
5%:1% | 0.556 | 0.444 | 0.900 | 8.429 | 6.444 | 5.947 | 5.957 | 3.829 |
5%:2% | 0.556 | 0.556 | 0.600 | 0.786 | 4.389 | 4.880 | 4.044 | 2.714 |
比例/时间 | 0h | 4h | 8h | 12h | 24h | 36h | 48h | 60h |
---|---|---|---|---|---|---|---|---|
3%:1% | 1.750 | 0.875 | 2.000 | 5.923 | 8.250 | 3.682 | 1.724 | 2.563 |
5%:1% | 0.556 | 0.444 | 0.900 | 8.429 | 6.444 | 5.947 | 5.957 | 3.829 |
5%:2% | 0.556 | 0.556 | 0.600 | 0.786 | 4.389 | 4.880 | 4.044 | 2.714 |
菌株/时间 | 0h | 4h | 8h | 12h | 24h | 36h | 48h | 60h |
---|---|---|---|---|---|---|---|---|
B. licheniformis | 0 | 0.13 | 1.80 | 4.00 | 3.57 | 3.02 | 2.93 | 4.00 |
B. megaterium | 1.00 | 0.13 | 0.80 | 1.37 | 3.65 | 2.23 | 1.76 | 1.88 |
B. pumilus | 0.18 | 0.10 | 0.32 | 2.70 | 5.50 | 6.00 | 3.46 | 4.88 |
B. cereus | 0.76 | 0.29 | 0.42 | 0.40 | 0.40 | 1.05 | 1.01 | 1.02 |
B. laterosporus | 0.45 | 0.15 | 0.43 | 1.55 | 1.30 | 7.50 | 1.55 | 1.24 |
B. thuringiensis | 0.75 | 0.33 | 1.20 | 1.50 | 2.33 | 1.48 | 1.26 | 1.14 |
菌株/时间 | 0h | 4h | 8h | 12h | 24h | 36h | 48h | 60h |
---|---|---|---|---|---|---|---|---|
B. licheniformis | 0 | 0.13 | 1.80 | 4.00 | 3.57 | 3.02 | 2.93 | 4.00 |
B. megaterium | 1.00 | 0.13 | 0.80 | 1.37 | 3.65 | 2.23 | 1.76 | 1.88 |
B. pumilus | 0.18 | 0.10 | 0.32 | 2.70 | 5.50 | 6.00 | 3.46 | 4.88 |
B. cereus | 0.76 | 0.29 | 0.42 | 0.40 | 0.40 | 1.05 | 1.01 | 1.02 |
B. laterosporus | 0.45 | 0.15 | 0.43 | 1.55 | 1.30 | 7.50 | 1.55 | 1.24 |
B. thuringiensis | 0.75 | 0.33 | 1.20 | 1.50 | 2.33 | 1.48 | 1.26 | 1.14 |
[1] |
Bertrand S, Bohni N, Schnee S, et al. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery[J]. Biotechnology advances, 2014, 32(6):1180-1204.
doi: 10.1016/j.biotechadv.2014.03.001 pmid: 24651031 |
[2] |
Chanos P, Mygind T. Co-culture-inducible bacteriocin production in lactic acid bacteria[J]. Applied microbiology and biotechnology, 2016, 100(10):4297-4308.
doi: 10.1007/s00253-016-7486-8 URL |
[3] | Xu D, Wang L, Du C. Progress in microbial co-culture--A review[J]. Acta Microbiologica Sinica, 2015, 55(9):1089-1096. |
[4] | Bertrand S, Azzollini A, Schumpp O, et al. Fungal co-culture as a new source of bioactive induced metabolites: A MS-based metabolomic study[J]. Planta Medica, 2012. |
[5] |
Marques J D L, Funck G D, Dannenberg G D S, et al. Bacteriocin-like substances of Lactobacillus curvatus P99: characterization and application in biodegradable films for control of Listeria monocytogenes in cheese[J]. Food Microbiology, 2017, 63(MAY):159-163.
doi: 10.1016/j.fm.2016.11.008 URL |
[6] |
Mtimet N, Trunet C, Mathot A G, et al. Walking dead: Permeabilization of heat-treated Geobacillus stearothermophilus ATCC 12980 spores under growth-preventing conditions[J]. Food Microbiology, 2017, 64(jun.):126-134.
doi: 10.1016/j.fm.2016.12.013 URL |
[7] |
Hu Y, Liu X, Shan C, et al. Novel bacteriocin produced by Lactobacillus alimentarius FM-MM4 from a traditional Chinese fermented meat Nanx Wudl: Purification, identification and antimicrobial characteristics[J]. Food Control, 2017, 77:290-297.
doi: 10.1016/j.foodcont.2017.02.007 URL |
[8] |
Horie M, Koike T, Sugino S, et al. Evaluation of probiotic and prebiotic-like effects of Bacillus subtilis BN on growth of lactobacilli [J]. Journal of General and Applied Microbiology, 2017, 64(1):26-33.
doi: 10.2323/jgam.2017.03.002 URL |
[9] | 徐薇薇, 林永华, 阮晖, 等. 纳豆芽孢杆菌与干酪乳杆菌共发酵制备富含纳豆激酶和吡咯喹啉醌的凝固型酸豆乳[C]. 中国食品科学技术学会第十一届年会论文摘要集, 2014:63-64. |
[10] |
RSsland E, Langsrud T, SRhaug T. Influence of controlled lactic fermentation on growth and sporulation of Bacillus cereus in milk[J]. International Journal of Food Microbiology, 2005, 103(1):69-77.
doi: 10.1016/j.ijfoodmicro.2004.11.027 URL |
[11] |
Karetkin B, Guseva E, Evdokimova S, et al. A quantitative model of Bacillus cereus ATCC 9634 growth inhibition by bifidobacteria for synbiotic effect evaluation[J]. World journal of microbiology & biotechnology, 2019, 35(6):89.
doi: 10.1007/s11274-019-2665-2 URL |
[12] |
Jhan J K, Chang W F, Wang P M, et al. Production of fermented red beans with multiple bioactivities using co-cultures of Bacillus subtilis and Lactobacillus delbrueckii subsp. bulgaricus [J]. LWT - Food Science and Technology, 2015, 63(2):1281-1287.
doi: 10.1016/j.lwt.2015.03.107 URL |
[13] | Ge J, Ping W, Song G, et al. Paracin 1.7, a bacteriocin produced by Lactobacillus paracasei HD1.7 isolated from Chinese cabbage sauerkraut, a traditional Chinese fermented vegetable food[J]. W Sheng Wu Xue Bao, 2009, 49(5):609-616. |
[14] |
Ge J, Sun Y, Xin X, et al. Purification and Partial Characterization of a Novel Bacteriocin Synthesized by Lactobacillus paracasei HD1-7 Isolated from Chinese Sauerkraut Juice[J]. Scientific reports, 2016, 6:19366.
doi: 10.1038/srep19366 URL |
[15] |
Ge J, Fang B, Wang Y, et al. Bacillus subtilis enhances production of Paracin1.7, a bacteriocin produced by Lactobacillus paracasei HD1-7, isolated from Chinese fermented cabbage[J]. Annals of Microbiology, 2014, 64(4):1735-1743.
doi: 10.1007/s13213-014-0817-z URL |
[16] |
Quinto E J, Marín J M, Schaffner DW. Effect of the competitive growth of Lactobacillus sakei MN on the growth kinetics of Listeria monocytogenes Scott A in model meat gravy[J]. Food Control, 2016, 63:34-45.
doi: 10.1016/j.foodcont.2015.11.025 URL |
[17] |
Valerio F, Bellis P D, Lonigro S L, et al. Use of Lactobacillus plantarum fermentation products in bread-making to prevent Bacillus subtilis ropy spoilage[J]. International Journal of Food Microbiology, 2008, 122(3):328-332.
doi: 10.1016/j.ijfoodmicro.2008.01.005 URL |
[18] |
Tabasco R, García-Cayuela T, Peláez C, et al. Lactobacillus acidophilus La-5 increases lactacin B production when it senses live target bacteria[J]. International journal of food microbiology, 2009, 132(2-3):109-116.
doi: 10.1016/j.ijfoodmicro.2009.04.004 pmid: 19411126 |
[19] |
Man L, Meng X, Zhao R, et al. The role of plNC8HK-plnD genes in bacteriocin production in Lactobacillus plantarum KLDS1.0391[J]. International Dairy Journal, 2014, 34(2):267-274.
doi: 10.1016/j.idairyj.2013.08.009 URL |
[20] |
Wu Q Q, You J H, Ahn H J, et al. Changes in growth and survival of Bifidobacterium by coculture with Propionibacterium in soy milk, cow's milk, and modified MRS medium[J]. International Journal of Food Microbiology, 2012, 157(1):65-72.
doi: 10.1016/j.ijfoodmicro.2012.04.013 URL |
[21] |
Chauhan A, Maheshwari D, Bajpai V. Isolation and preliminary characterization of a bacteriocin-producer Bacillus strain inhibiting methicillin resistant Staphylococcus aureus[J]. Acta biologica Hungarica, 2017, 68(2):208-219.
doi: 10.1556/018.68.2017.2.8 pmid: 28605978 |
[22] | 苑婷婷. 产细菌素Paracin1.7菌株群体感应行为初探[D]. 哈尔滨:黑龙江大学, 2010. |
[23] | 易健明, 屈武斌, 张成岗. 实时荧光定量PCR的数据分析方法[J]. 生物技术通讯, 2015, 26(1):140-145. |
[24] | 马艳莉, 段哲, 梁静静, 等. 青方腐乳中丁酸梭菌分离鉴定及与乳酸菌共培养研究[J]. 中国调味品, 2020, 45(09):64-68. |
[25] |
Saxena R K, Dutt K, Agarwal L, et al. A highly thermostable and alkaline amylase from a Bacillus sp. PN5[J]. Bioresource Technology, 2007, 98(2):260-265.
doi: 10.1016/j.biortech.2006.01.016 URL |
[26] |
Ariana M, Hamedi J. Enhanced production of nisin by co-culture of Lactococcus lactis sub sp. lactis and Yarrowia lipolytica in molasses based medium[J]. Journal of biotechnology, 2017, 256:21-26.
doi: S0168-1656(17)31521-3 pmid: 28694185 |
[27] |
Zhu Y, Liu J, Du G, et al. Sporulation and spore stability of Bacillus megaterium enhance Ketogulonigenium vulgare propagation and 2-keto-l-gulonic acid biosynjournal[J]. Bioresource Technology, 2012, 107:399-404.
doi: 10.1016/j.biortech.2011.12.080 URL |
[28] | Fossi B T, Tavea F, Fontem L A, et al. Microbial interactions for enhancement of α-amylase production by Bacillus amyloliquefaciens 04BBA15 and Lactobacillus fermentum 04BBA19[J]. Biotechnol Rep:amst, 2014, 4:99-106. |
[29] |
Tremonte P, Reale A, Renzo T D, et al. Interactions between Lactobacillus sakei and CNC (Staphylococcus xylosus and Kocuria varians) and their influence on proteolytic activity[J]. Letters in Applied Microbiology, 2010, 51(5):586-594.
doi: 10.1111/j.1472-765X.2010.02939.x pmid: 20875035 |
[30] | Mascia T, Gallitelli D. Synergies and antagonisms in virus interactions[J]. Plant ence, 2016, 252:176-192. |
[1] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[2] | 尤梦瑶, 万璐, 闫佳佳, 张赫, 郑春英. 甘草内生菌研究概况[J]. 中国农学通报, 2022, 38(26): 20-26. |
[3] | 陈云坤, 胡春艳, 张知宇, 赵艳芳, 曹挥. 5种瑞香科植提取物对7种植物病原真菌的抑菌活性测定[J]. 中国农学通报, 2022, 38(13): 148-156. |
[4] | 谢道龙, 谭智, 李虹烨, 付小侠, 王帆, 刘晓霞, 覃佐东, 何福林, 骆鹰. 银杏GbASR基因的克隆、生物信息学及表达分析[J]. 中国农学通报, 2021, 37(32): 34-41. |
[5] | 郝小聪, 王伟伟, 张风廷, 孙瑞, 房兆峰, 柳珊, 曹志琛, 朱文根, 赵昌平, 汪德州, 唐益苗. 小麦TaHPPR基因的克隆与表达分析[J]. 中国农学通报, 2021, 37(3): 129-138. |
[6] | 潘月, 杨志馨, 杨晓丽, 王旭, 宋刚. 细菌素Paracin 1.7在乳酸乳球菌NZ9000中的异源表达及抑菌性质的研究[J]. 中国农学通报, 2021, 37(26): 15-23. |
[7] | 马悦, 于冰. nsLTPs基因参与植物逆境胁迫应答的研究进展[J]. 中国农学通报, 2021, 37(18): 95-101. |
[8] | 董春燕, 梁卫红, 程辉, 于东明, 吕东, 孙炎锋, 苗琛. 植物脂氧合酶在逆境胁迫应答中功能研究进展[J]. 中国农学通报, 2020, 36(33): 102-107. |
[9] | 田甜, 孙艳阳, 康杰, 宋刚, 高冬妮, 葛菁萍. 诱导Paracin1.7生成的刺激因子的分离与纯化[J]. 中国农学通报, 2020, 36(32): 17-22. |
[10] | 邹锋康, 贾海伦, 丁广洲, 陈丽. 甜菜磷脂酰肌醇转运蛋白基因SbSEC14的克隆及低温胁迫下的表达分析[J]. 中国农学通报, 2020, 36(32): 39-48. |
[11] | 王爽, 李海英. 植物E3泛素连接酶与非生物胁迫相关研究进展[J]. 中国农学通报, 2020, 36(29): 47-53. |
[12] | 刘静妍, 闫双勇, 张融雪, 苏京平, 孙玥, 孙林静. 水稻耐低温研究重要进展[J]. 中国农学通报, 2020, 36(27): 1-5. |
[13] | 韩锦涛, 郭俊兵, 李素清. 山西云顶山亚高山草甸优势种种间关系分析[J]. 中国农学通报, 2020, 36(27): 66-71. |
[14] | 张炎, 房保柱, 平文祥, 葛菁萍. 副干酪乳杆菌HD1.7高密度培养产细菌素Paracin1.7条件优化[J]. 中国农学通报, 2020, 36(24): 116-124. |
[15] | 王琼, 郭毅晶, 康琳, 张少颖, 于有伟, 宋小青. 一氧化碳(CO)在植物体内的生理生化作用研究进展[J]. 中国农学通报, 2020, 36(12): 86-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||