中国农学通报 ›› 2020, Vol. 36 ›› Issue (24): 85-90.doi: 10.11924/j.issn.1000-6850.casb20200200090
所属专题: 生物技术
耿贵1,2(), 李任任1, 吕春华1, 於丽华2, 王宇光2(
)
收稿日期:
2020-02-07
修回日期:
2020-03-09
出版日期:
2020-08-25
发布日期:
2020-08-20
通讯作者:
王宇光
作者简介:
耿贵,男,1963年出生,黑龙江牡丹江人,博士生导师,研究员,博士,研究方向:甜菜耕作与栽培。通信地址:150080 黑龙江省哈尔滨市学府路74号 黑龙江大学,Tel:0451-86608913,E-mail:基金资助:
Geng Gui1,2(), Li Renren1, Lv Chunhua1, Yu Lihua2, Wang Yuguang2(
)
Received:
2020-02-07
Revised:
2020-03-09
Online:
2020-08-25
Published:
2020-08-20
Contact:
Wang Yuguang
摘要:
为了探究外源物质对植物耐盐性的调控机理及进一步利用外源调节物质提高作物耐盐性,归纳了五大类传统植物激素(生长素、赤霉素、乙烯、脱落酸、细胞分裂素)以及褪黑素、水杨酸、多胺、油菜素类固醇、茉莉酸类等外源生长调节物质对盐胁迫下植物生长的调控情况。同时总结了硅、钙等离子类外源调节物对盐胁迫下植物生长的调节作用,多种外源调节物质可通过增强光合作用、提高渗透势、增加抗氧化酶活性及减少离子毒害等方式来减轻盐害。本文为进一步利用单一或复合外源调节物质来缓解作物盐害盐提供理论依据。
中图分类号:
耿贵, 李任任, 吕春华, 於丽华, 王宇光. 外源调节物质对盐胁迫下植物生长调控研究进展[J]. 中国农学通报, 2020, 36(24): 85-90.
Geng Gui, Li Renren, Lv Chunhua, Yu Lihua, Wang Yuguang. Exogenous Regulator Substances Regulate Plant Growth Under Salt Stress: A Review[J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 85-90.
[1] |
Abbasi H, Jamil M, Haq A, et al. Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: A review[J]. Zemdirbyste-Agriculture, 2016,103:229-238.
doi: 10.13080/z-a.2016.103.030 URL |
[2] | 尹相博, 李青, 王绍武. 外源物质缓解盐胁迫下植物幼苗生长的研究进展[J]. 黑龙江农业科, 2013(11):147-150. |
[3] |
Durner J, Klessig D F. Nitric oxide as a signal in plants[J]. Current opinion in plant biology, 1999,2(5):369-374.
doi: 10.1016/s1369-5266(99)00007-2 URL pmid: 10508751 |
[4] | 李顺, 景举伟, 严金平, 等. 气体信号分子H2S在植物中的研究进展[J]. 植物生理学报, 2015,51(5):579-585. |
[5] | 颜志明, 孙锦, 郭世荣, 等. 外源脯氨酸对盐胁迫下甜瓜幼苗根系抗坏血酸-谷胱甘肽循环的影响[J]. 植物科学学报, 2014,32(05):502-508. |
[6] | 马婷燕, 李彦忠. 外源甜菜碱对NaCl胁迫下紫花苜蓿种子萌发及幼苗抗性的影响[J]. 草业科学, 2019,36(12):3100-3110. |
[7] | 段娜, 贾玉奎, 徐军, 等. 植物内源激素研究进展[J]. 中国农学通报, 2015,31(2):159-165. |
[8] | 张丽, 罗孝明, 蒙辉, 等. 盐胁迫下植物激素水平的研究进展[J]. 蔬菜, 2017(3):29-32. |
[9] |
Wolters H, Jürgens G. Survival of the flexible: hormonal growth control and adaptation in plant development[J]. Nature Reviews Genetics, 2009,10(5):305-317.
doi: 10.1038/nrg2558 URL pmid: 19360022 |
[10] |
Wang Y, Li K, Li X. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2009,166(15):1637-1645.
doi: 10.1016/j.jplph.2009.04.009 URL pmid: 19457582 |
[11] |
Burssens S, Himanen K, Cotte B V D, et al. Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana[J]. Planta, 2000,211(5):632-640.
doi: 10.1007/s004250000334 URL |
[12] |
West G. Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress[J]. Plant physiology, 2004,135(2):1050-1058.
doi: 10.1104/pp.104.040022 URL pmid: 15181207 |
[13] |
Sun F, Zhang W, Hu H, et al. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis[J]. Plant Physiology, 2008,146(1):178-188.
doi: 10.1104/pp.107.109413 URL pmid: 18024552 |
[14] |
Albino M, Giancarlo B, Giampaolo R, et al. Contrasting effects of GA 3 treatments on tomato plants exposed to increasing salinity[J]. Journal of Plant Growth Regulation, 2010,29(1):63-72.
doi: 10.1007/s00344-009-9114-7 URL |
[15] |
Achard P, Cheng H, Grauwe L D, et al. Integration of plant Responses to environmentally activated phytohormonal signals[J]. Science, 2006,311(5757):91-94.
doi: 10.1126/science.1118642 URL pmid: 16400150 |
[16] | 申国柱, 刘湘永, 申仕康, 等. 6-BA和NAA对茶梨种子发芽特性的影响[J]. 种子, 2008(03):73-74. |
[17] | 廖祥儒, 贺普超, 朱新产. 玉米素对盐渍下葡萄叶圆片H2O2清除系统的影响[J]. Acta Botanica Sinica, 1997(07):641-646. |
[18] |
Yu J, Huang J, Wang Z, et al. An Na+/H + antiporter gene from wheat plays an important role in stress tolerance[J]. Journal of Biosciences, 2007,32(2):1153-1161.
doi: 10.1007/s12038-007-0117-x URL |
[19] |
Zhao Q, Zhao Y, Zhao B, et al. Cloning and functional analysis of wheat V-H+-ATPase subunit genes[J]. Plant Molecular Biology, 2009,69(1-2):33-46.
doi: 10.1007/s11103-008-9403-8 URL |
[20] |
Fukuda A, Tanaka Y. Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+-inorganic pyrophosphatase, H +-ATPase subunit A, and Na +/H + antiporter in barley[J]. Plant Physiology and Biochemistry, 2006,44(5-6):351-358.
doi: 10.1016/j.plaphy.2006.06.012 URL pmid: 16806958 |
[21] |
Agarwal S, Sairam R K, Srivastava G C, et al. Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings[J]. Plant Science, 2005,169(3):559-570.
doi: 10.1016/j.plantsci.2005.05.004 URL |
[22] |
Juan F, Jiménez B, Oscar A, et al. Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress[J]. Plant Physiology and Biochemistry, 2007,45(10-11):812-821.
doi: 10.1016/j.plaphy.2007.08.001 URL pmid: 17890098 |
[23] |
Ajmal K, Raziuddin A, Bilquees G, et al. Dormancy and germination responses of halophyte seeds to the application of ethylene[J]. Comptes Rendus Biologies, 2009,332(9):806-815.
doi: 10.1016/j.crvi.2009.05.002 URL pmid: 19748455 |
[24] |
Hwang O J, Back K. Melatonin deficiency confers tolerance to multiple abiotic stresses in rice via decreased brassinosteroid levels[J]. International journal of molecular sciences, 2019,20(20):5173.
doi: 10.3390/ijms20205173 URL |
[25] |
Wei W, Li Q T, Chu Y N, et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants.[J]. Journal of Experimental Botany, 2015,66(3):695-707.
doi: 10.1093/jxb/eru392 URL pmid: 25297548 |
[26] |
Manchester L C, Coto Montes A, Boga J A, et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable[J]. Journal of Pineal Research, 2015,59(4):403-419.
doi: 10.1111/jpi.12267 URL pmid: 26272235 |
[27] | 王明瑶, 曹亮, 于奇, 等. 褪黑素浸种对盐碱胁迫下大豆种子萌发的影响[J]. 作物杂志, 2019,6:195-202. |
[28] |
陈莉, 刘连涛, 马彤彤, 等. 褪黑素对盐胁迫下棉花种子抗氧化酶活性及萌发的影响[J]. 棉花学报, 2019,31(5):438-447.
doi: 10.11963/1002-7807.cllcd.20190905 URL |
[29] | 彭玲, 李爱, 杨漫, 等. 外施褪黑素对盐胁迫下红花生长和生理特性的影响[J]. 中药材, 2019,42(8):1730-1737. |
[30] | 范海霞, 郭若旭, 辛国奇, 等. 外源褪黑素对盐胁迫下芦苇幼苗生长和生理特性的影响[J]. 中国农业科技导报, 2019,21(11):51-58. |
[31] |
Zacharoula K, Therios L, Efstathios R, et al. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings[J]. Plant Physiology and Biochemistry, 2015,86:155-165.
doi: 10.1016/j.plaphy.2014.11.021 URL pmid: 25500452 |
[32] | 尹赜鹏, 王珍琪, 齐明芳, 等. 外施褪黑素对盐胁迫下番茄幼苗光合功能的影响[J]. 生态学杂志, 2019,38(02):467-475. |
[33] |
Tan X, Long W, Zeng L, et al. Melatonin-induced transcriptome variation of rapeseed seedlings under Salt Stress[J]. International journal of molecular sciences, 2019,20(21):5355.
doi: 10.3390/ijms20215355 URL |
[34] |
Choi G H, Back K. Suppression of melatonin 2-hydroxylase increases melatonin production leading to the enhanced abiotic stress tolerance against Cadmium, Senescence, Salt, and Tunicamycin in Rice Plants[J]. Biomolecules, 2019,9(10):589.
doi: 10.3390/biom9100589 URL |
[35] | 彭浩, 宋文路, 王晓强, 等. 水杨酸与植物抗逆性关系研究进展[J]. 园艺与种苗, 2016(02):74-78. |
[36] | 廖姝, 倪祥银, 齐泽民, 等. 水杨酸对NaCl胁迫下大豆种子萌发和幼苗逆境生理的影响[J]. 内江师范学院学报, 2013,28(02):39-42. |
[37] |
Mimouni H, Wasti S, Manaa A, et al. Does Salicylic Acid (SA) improve tolerance to salt stress in plants? a study of SA effects on tomato plant growth, water dynamics, photosynjournal, and biochemical parameters[J]. OMICS: A Journal of Integrative Biology, 2016,20(3):180-190.
doi: 10.1089/omi.2015.0161 URL pmid: 26909467 |
[38] |
Li T, Hu Y, Du X, et al. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynjournal and enhancing antioxidant systems[J]. PLoS One, 2014,9(10):e109492.
doi: 10.1371/journal.pone.0109492 URL pmid: 25302987 |
[39] |
Garg N, Bharti A. Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress[J]. Mycorrhiza, 2018,28(8):727-746.
doi: 10.1007/s00572-018-0856-6 URL pmid: 30043257 |
[40] |
Zheng J, Ma X, Zhang X, et al. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions[J]. Physiology and Molecular Biology of Plants, 2018,24(2):231-238.
doi: 10.1007/s12298-017-0496-x URL pmid: 29515317 |
[41] |
Ma X, Zheng J, Zhang X, et al. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynjournal, protecting morphological structure, and enhancing the antioxidant system[J]. Frontiers in Plant Science, 2017,8:600.
doi: 10.3389/fpls.2017.00600 URL pmid: 28484476 |
[42] | 孙德智, 韩晓日, 彭靖, 等. 外源NO和SA对盐胁迫下番茄幼苗叶片膜脂过氧化及AsA-GSH循环的影响[J]. 植物科学学报, 2018,36(4):612-622. |
[43] |
Hussain S S, Ali M, Ahmad M, et al. Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants[J]. Biotechnology Advances, 2011,29(3):300-311.
doi: 10.1016/j.biotechadv.2011.01.003 URL |
[44] | Zhang Y, Wu R, Qin G, et al. Overexpression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis[J]. Journal of Integrative Plant Biology, 2011,6:87-100. |
[45] |
Tavladoraki P, Cona A, Federico R, et al. Polyamine catabolism: Target for antiproliferative therapies in animals and stress tolerance strategies in plants[J]. Amino Acids, 2012,42:411-426
doi: 10.1007/s00726-011-1012-1 URL |
[46] |
Rubén A, Marta. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum[J]. Plant Signaling & Behavior, 2011,6:243-250.
doi: 10.4161/psb.6.2.14317 URL pmid: 21330782 |
[47] | 束胜. 外源腐胺缓解黄瓜幼苗盐胁迫伤害的光合作用机理[D]. 南京:南京农业大学, 2012. |
[48] | 张毅. 亚精胺对番茄幼苗盐碱胁迫的缓解效应及其调控机理[D]. 杨凌:西北农林科技大学, 2013. |
[49] |
Zhao F, Song C, He J, et al. Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities[J]. Plant physiology. 2007,145:1061-1072.
doi: 10.1104/pp.107.105882 URL pmid: 17905858 |
[50] |
孟德云, 侯林琳, 杨莎, 等. 外源多胺对盆栽花生盐胁迫的缓解作用[J]. 植物生态学报, 2015,39(12):1209-1215.
doi: 10.17521/cjpe.2015.0117 URL |
[51] | 范玉琴. 植物中油菜素类固醇信号转导与细胞增殖[J]. 亚热带植物科学, 2007,3:80-84. |
[52] |
Krishna P, Prasad B D, Rahman T. Brassinosteroid action in plant abiotic stress tolerance[J]. Methods Mol Biol., 2017,1564:193-202.
doi: 10.1007/978-1-4939-6813-8_16 URL pmid: 28124256 |
[53] | Anjum S, Wang L, Farooq M, et al. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange[J]. Journal of Agronomy and Crop ence, 2011,197(3):177-185 |
[54] |
Liu J, Gao H, Wang X, et al. Effects of 24-epibrassinolide on plant growth osmotic regulation and ion homeostasis of salt-stressed canola[J]. Plant Biology, 2014,16(2):440-450.
doi: 10.1111/plb.12052 URL |
[55] | Ling Y, Sheng S, Jin S, et al. Effects of 24-epibrassinolide on the photosynthetic characteristics antioxidant system and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress[J]. Photosynjournal Research, 2012,112(3):205-214. |
[56] |
Catterou F, Dubois H, Schaller L, et al. Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. I. Molecular, cellular and physiological characterization of the Arabidopsis bull mutant, defective in the delta 7-sterol-C5-desaturation step leading to brassinosteroid biosynjournal[J]. Planta, 2001,212(5-6):659-672.
doi: 10.1007/s004250000466 URL |
[57] |
Ashraf N, Akram R, Arteca M, et al. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance[J]. Critical Reviews in Plant Sciences, 2010,29(3):162-190.
doi: 10.1080/07352689.2010.483580 URL |
[58] | 刘丹. 外源BR对盐碱胁迫下甜菜生理特性及产量和品质的影响[D]. 哈儿滨:东北农业大学, 2019. |
[59] |
Efimova M V, Khripach V A, Boyko E V. The priming of potato plants induced by brassinosteroids reduces oxidative stress and increases salt tolerance[J]. Doklady Biological Sciences, 2018,478(1):33-36.
doi: 10.1134/S0012496618010106 URL pmid: 29536405 |
[60] |
Wu W, Zhang Q, Ervin E H, et al. Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-Epibrassinolide[J]. Frontiers in Plant Science, 2017,8:1017.
doi: 10.3389/fpls.2017.01017 URL pmid: 28674542 |
[61] |
Huang H, Liu B, Liu L, et al. Jasmonate action in plant growth and development[J]. Journal of Experimental Botany, 2017,68(6):1349-1359.
doi: 10.1093/jxb/erw495 URL pmid: 28158849 |
[62] | 蔡昆争, 董桃杏, 徐涛. 茉莉酸类物质(JAs)的生理特性及其在逆境胁迫中的抗性作用[J]. 生态环境, 2006(2):397-404. |
[63] | 李小玲, 华智锐. 外源茉莉酸甲酯对盐胁迫下黄芩种子萌发及幼苗生理特性的影响[J]. 山西农业科学, 2016,44(11):1603-1607. |
[64] | 周晓馥, 王艺璇. 外源茉莉酸对盐胁迫下玉米光合特性的影响[J]. 吉林师范大学学报, 2019,40(4):80-86. |
[65] | 严加坤, 严荣, 汪亚妮. 外源茉莉酸甲酯对盐胁迫下玉米根系吸水的影响[J]. 广东农业科学, 2019,46(1):1-6. |
[66] |
Zhu Y, Gong H. Beneficial effects of silicon on salt and drought tolerance in plants[J]. Agronomy for Sustainable Development, 2013,34(2):455-472.
doi: 10.1007/s13593-013-0194-1 URL |
[67] |
Etesami H, Jeong B R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants[J]. Ecotoxicology and Environmental Safety, 2017,147:881-896.
doi: 10.1016/j.ecoenv.2017.09.063 URL pmid: 28968941 |
[68] |
Alzahrani Y, Ku A, Alharby H F, et al. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium[J]. Ecotoxicology and Environmental Safety, 2018,154:187-196.
doi: 10.1016/j.ecoenv.2018.02.057 URL pmid: 29475124 |
[69] |
Lotfi R, Ghassemi Golezani K. Influence of salicylic acid and silicon on seed development and quality of mung bean under salt stress[J]. Seed Science and Technology, 2015,43(110):52-61.
doi: 10.15258/sst URL |
[70] |
Shiwen W, Peng L, Daoqian C, et al. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber[J]. Frontiers in Plant Science, 2015,6:759.
doi: 10.3389/fpls.2015.00759 URL pmid: 26442072 |
[71] |
Yin L, Wang S, Li J, et al. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor[J]. Acta Physiologiae Plantarum, 2013,35(11):3099-3107.
doi: 10.1007/s11738-013-1343-5 URL |
[72] | 任珺, 孙梦洁, 张照桤, 等. 外源钙对盐胁迫下苦豆子(Sophora alopecuroides)种子萌发和幼苗生长的影响[J]. 中国沙漠, 2019,39(01):105-109. |
[73] | 李文杨. 外源钙对盐胁迫下白菜种子萌发的影响[J]. 南方园艺, 2018,29(01):9-12. |
[74] | 黄璐瑶, 李壮壮, 段童瑶, 等. 盐胁迫下外源钙对忍冬光合系统的调控[J]. 中国中药杂志, 2019,44(8):1531-1536. |
[75] | 杨莎, 侯林琳, 郭峰, 等. 盐胁迫下外源Ca2+对花生生长发育、生理及产量的影响[J]. 应用生态学报, 2017,28(3):894-900. |
[76] | 王文银, 高小刚, 司晓林, 等. 外源钙盐对盐胁迫下沙拐枣渗透调节和膜脂过氧化的影响[J]. 环境科学研究, 2017,30(8):1230-1237. |
[1] | 武迪, 张锋, 隋春莹, 师君慧, 万雪洁, 刘义国, 韩伟, 师长海. 外源活性物质对小麦苗期抗逆性的影响[J]. 中国农学通报, 2022, 38(9): 14-19. |
[2] | 刘青松, 贾艳丽, 肖宇, 郭志顶, 纪明妹, 赵忠祥, 黄素芳, 岳明强, 刘震, 阎旭东, 徐玉鹏. 盐胁迫对苜蓿生理性状和生长性状的影响[J]. 中国农学通报, 2022, 38(8): 96-101. |
[3] | 张宇阳, 周雪, 刘灵艺, 许吴俊, 任旭琴, 王广龙, 熊爱生. 大蒜几丁质酶基因AsCHI1的鉴定及其对盐胁迫的响应[J]. 中国农学通报, 2022, 38(5): 23-29. |
[4] | 伊嘉雯, 冯棣, 朱崴, 亓娜, 滕奉魁, 卢小引. 不同品种水稻发芽阶段耐盐性对比研究[J]. 中国农学通报, 2022, 38(33): 10-14. |
[5] | 王洋, 张瑞, 周雨晴, 刘永昊, 刘高生, 戴其根. 基于文献计量的国内水稻耐盐性研究态势分析[J]. 中国农学通报, 2022, 38(31): 147-153. |
[6] | 王敬东, 惠建, 白海波, 马斯霜, 李树华. 水稻萌发和幼苗生长对外源物质调节的响应[J]. 中国农学通报, 2022, 38(29): 1-7. |
[7] | 郭东森, 王琳, 魏启舜, 崔联明, 周影, 郭成宝. 羽毛生物降解液对盐胁迫下小白菜生长的生理调控作用[J]. 中国农学通报, 2022, 38(25): 25-29. |
[8] | 黄平升, 刘世男, 李婷, 覃永华. 外源硅对盐胁迫下黄果厚壳桂幼苗的光合荧光及抗氧化特性的影响[J]. 中国农学通报, 2022, 38(23): 32-38. |
[9] | 张利琴, 殷红燕, 穆淑媛, 付均惠, 李燕. 5个杂交桑种质的耐盐性评价[J]. 中国农学通报, 2022, 38(17): 62-68. |
[10] | 邢起铭, 金文杰, 周利斌, 李文建, 刘瑞媛, 马建忠. 植物根际促生菌提高植物耐盐性的研究进展[J]. 中国农学通报, 2022, 38(11): 46-52. |
[11] | 王明泉, 付立新, 李国良, 扈光辉, 任洪雷, 胡少新, 杨剑飞, 刘畅, 龚士琛. 玉米抗感种质资源苗期耐盐性的光合作用机制研究[J]. 中国农学通报, 2021, 37(5): 8-14. |
[12] | 马慧敏, 孙培琳, 马春泉. 转录因子BvM14-GAI耐盐功能研究[J]. 中国农学通报, 2021, 37(34): 34-42. |
[13] | 付茵茵, 闫文潇, 王友晓, 庞彩红, 李双云, 周继磊, 闵旭峰, 刘盛芳, 臧真荣, 亓玉昆, 夏阳. 国槐无性系对NaCl胁迫的生长生理响应及耐盐性综合评价[J]. 中国农学通报, 2021, 37(34): 43-51. |
[14] | 王爽, 李海英. 甜菜应答盐胁迫PUB基因的生物信息学分析[J]. 中国农学通报, 2021, 37(33): 120-127. |
[15] | 贾林, 刘璐瑶, 王鹏山, 李志明, 张金龙, 李新征, 田晓明, 王国强. 盐地碱蓬的耐盐机理及改良土壤机理研究进展[J]. 中国农学通报, 2021, 37(3): 73-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||