| [1] | 郭光礼. 经产奶牛围产前期DCAB日粮饲喂与产后瘫痪浅析[J]. 山东畜牧兽医, 2015, 36(2):26-27. | 
																													
																						| [2] | 李启照, 孙维浩, 卫强. 围产前期奶牛日粮中添加过瘤胃脂肪对其干物质采食量和泌乳性能的影响[J]. 中国饲料, 2019(6):55-59. | 
																													
																						| [3] | 彭传文, 祁敏丽, 董永, 等. 围产前期饲喂阴离子盐日粮对奶牛产后代谢疾病发病率的影响[J]. 中国乳业, 2020(10):34-36. | 
																													
																						| [4] | Chamberlin W G, Middleton J R, Spain J N, et al. Subclinical hypocalcemia, plasma biochemical parameters, lipid metabolism, postpartum disease, and fertility in postparturient dairy cows[J]. Journal of Dairy Science, 2013, 96(11):7001-7013. doi: S0022-0302(13)00647-4    
																																																	pmid: 24054301
 | 
																													
																						| [5] | 陈子宁, 李妍, 高艳霞, 等. 围产前期日粮能量水平对荷斯坦奶牛产后生产性能和血液指标的影响[J]. 畜牧兽医学报, 2015, 46(11):2002-2009. | 
																													
																						| [6] | 穆淑琴, 李鹏. 奶牛围产期低血钙症的发生及营养调控措施[J]. 中国牛业科学, 2011, 37(4):41-43. | 
																													
																						| [7] | Risco C A, Reynolds J P, Hird D. Uterine prolapse and hypocalcemia in dairy cows[J]. Journal of the American Veterinary Medical Association, 1984, 185(12):1517-1519. | 
																													
																						| [8] | Shock D A, Roche S M, Genore R, et al. A pilot study to evaluate the effect of a novel calcium and vitamin D-containing oral bolus on serum calcium levels in Holstein dairy cows following parturition[J]. Veterinary Medicine: Research and Reports, 2019, 10:151. doi: 10.2147/VMRR    
																																					URL
 | 
																													
																						| [9] | Martinez N, Risco C A, Lima F S, et al. Evaluation of peripartal calcium status, energetic profile, and neutrophil function in dairy cows at low or high risk of developing uterine disease[J]. Journal of Dairy Science, 2012, 95(12):7158-7172. doi: 10.3168/jds.2012-5812    
																																																	pmid: 23021755
 | 
																													
																						| [10] | Venjakob P L, Borchardt S, Heuwieser W. Hypocalcemia—Cow-level prevalence and preventive strategies in German dairy herds[J]. Journal of Dairy Science, 2017, 100(11):9258-9266. doi: S0022-0302(17)30797-X    
																																																	pmid: 28865859
 | 
																													
																						| [11] | Venjakob P L, Pieper L, Heuwieser W, et al. Association of postpartum hypocalcemia with early-lactation milk yield, reproductive performance, and culling in dairy cows[J]. Journal of Dairy Science, 2018, 101(10):9396-9405. doi: S0022-0302(18)30662-3    
																																																	pmid: 30031579
 | 
																													
																						| [12] | Horst R L, Goff J P, Reinhardt T A. Role of vitamin D in calcium homeostasis and its use in prevention of bovine periparturient paresis[J]. Acta Veterinaria Scandinavica Supplementum, 2003, 97(97):35. | 
																													
																						| [13] | Horst R L, Littledike E T. Comparison of plasma concentrations of vitamin D and its metabolites in young and aged domestic animals[J]. Comparative biochemistry and physiology.  B, Comparative biochemistry, 1982, 73(3):485-489. | 
																													
																						| [14] | Goff J P, Horst R L. Role of acid-base physiology on the pathogenesis of parturient hypocalcaemia (milk fever)--the DCAD theory in principal and practice[J]. Acta Veterinaria Scandinavica Supplementum, 2003, 97(97):51. | 
																													
																						| [15] | Rodriguez M, Salmeron M D, Martin-Malo A, et al. A New Data Analysis System to Quantify Associations between Biochemical Parameters of Chronic Kidney Disease-Mineral Bone Disease[J]. Plos One, 2016, 11(1):e0146801. doi: 10.1371/journal.pone.0146801    
																																					URL
 | 
																													
																						| [16] | Nelson C D. Vitamin D Metabolism in Dairy Cattle and Implications for Dietary Requirements [C]//Florida Ruminant Nutition Symposium, 2014. | 
																													
																						| [17] | Pike J W, Lee S M, Benkusky N A, et al. Genomic Mechanisms Governing Mineral Homeostasis and the Regulation and Maintenance of Vitamin D Metabolism[J]. JBMR plus, 2021, 5(1):e10433. | 
																													
																						| [18] | Goff J P, Koszewski N J. Comparison of 0.46% calcium diets with and without added anions with a 0.7% calcium anionic diet as a means to reduce periparturient hypocalcemia[J]. Journal of Dairy Science, 2018, 101(6):5033-5045. doi: 10.3168/jds.2017-13832    
																																					URL
 | 
																													
																						| [19] | Kim M H, Kim S H, Park H W, et al. Effects of calcium and genistein on body fat and lipid metabolism in high fat-induced obese mice[J]. Journal of Nutrition and Health, 2006, 39(8):733-741. | 
																													
																						| [20] | Park J H, Jeong J S, Lee S I, et al. Influence of Dietary Particle Size and Sources of Calcium and Vitamin D3 on Production Performance, Egg Quality and Blood Calcium Concentration of ISA Brown Laying Hens[J]. Animal Nutrition and Feed Technology, 2017, 17(1):1-12. doi: 10.5958/0974-181X.2017.00001.4    
																																					URL
 | 
																													
																						| [21] | Brömme H J, Dargel R. Effect of in vivo and in vitro application of glucagon, insulin and epinephrine on Ca++-transport properties of liver mitochondria[J]. Acta biologica et medica Germanica, 1979, 38(10):1365-1377. pmid: 162024
 | 
																													
																						| [22] | Lean I J, Ondarza M, Sniffen C J, et al. Meta-analysis to predict the effects of metabolizable amino acids on dairy cattle performance[J]. Journal of Dairy Science, 2018, 101(1):340-364. doi: S0022-0302(17)30993-1    
																																																	pmid: 29128215
 | 
																													
																						| [23] | Lean I J, Santos J, Block E, et al. Effects of prepartum dietary cation-anion difference intake on production and health of dairy cows: A meta-analysis[J]. Journal of Dairy Science, 2019, 102(3):2103-2133. doi: S0022-0302(18)31114-7    
																																																	pmid: 30594362
 | 
																													
																						| [24] | Martinez N, Rodney R M, Block E, et al. Effects of prepartum dietary cation-anion difference and source of vitamin D in dairy cows: Health and reproductive responses[J]. Journal of Dairy Science, 2017, 101(3):2563-2578. doi: 10.3168/jds.2017-13740    
																																					URL
 | 
																													
																						| [25] | Lean I J, Degaris P J, Celi P, et al. Influencing the future: interactions of skeleton, energy, protein and calcium during late gestation and early lactation[J]. Animal Production Science, 2014, 54(9):1177-1189. doi: 10.1071/AN14479    
																																					URL
 | 
																													
																						| [26] | Mcart J A A, Oetzel G R. A stochastic estimate of the economic impact of oral calcium supplementation in postparturient dairy cows[J]. Journal of Dairy Science, 2015, 98(10):7408-7418. doi: 10.3168/jds.2015-9479    
																																					URL
 | 
																													
																						| [27] | Lean I J, Degaris P J, Mcneil D M, et al. Hypocalcemia in Dairy Cows: Meta-analysis and Dietary Cation Anion Difference Theory Revisited[J]. Journal of Dairy Science, 2006, 89(2):669-684. pmid: 16428636
 | 
																													
																						| [28] | 甄玉国, 赵巍, 王兰惠, 等. 围产前期不同钙水平日粮对奶牛血钙水平及钙代谢的影响[J]. 饲料工业, 2016, 37(10):37-42. | 
																													
																						| [29] | Santos J E P, Lean I J, Golder H, et al. Meta-analysis of the effects of prepartum dietary cation-anion difference on performance and health of dairy cows[J]. Journal of dairy science, 2019, 102(3):2134-2154. doi: S0022-0302(19)30003-7    
																																																	pmid: 30612801
 | 
																													
																						| [30] | Charbonneau E, Chouinard P Y, Tremblay G F, et al. Hay to reduce dietary cation-anion difference for dry dairy cows[J]. Journal of dairy science, 2008, 91(4):1585-1596. doi: 10.3168/jds.2007-0775    
																																																	pmid: 18349251
 | 
																													
																						| [31] | Constable P D, Megahed A A, Hiew M W H. Measurement of urine pH and net acid excretion and their association with urine calcium excretion in periparturient dairy cows[J]. Journal of dairy science, 2019, 102(12):11370-11383. doi: S0022-0302(19)30830-6    
																																																	pmid: 31548071
 | 
																													
																						| [32] | Blanc C D, Van der List M, Aly S S, et al. Blood calcium dynamics after prophylactic treatment of subclinical hypocalcemia with oral or intravenous calcium[J]. Journal of dairy science, 2014, 97(11):6901-6906. doi: 10.3168/jds.2014-7927    
																																																	pmid: 25200776
 | 
																													
																						| [33] | Kerwin A L, Ryan C M, Leno B M, et al. Effects of feeding synthetic zeolite A during the prepartum period on serum mineral concentration, oxidant status, and performance of multiparous Holstein cows[J]. Journal of dairy science, 2019, 102(6):5191-5207. doi: S0022-0302(19)30367-4    
																																																	pmid: 31005325
 |