[1] |
WU Z J, MA H Y, ZHUANG J. iTRAQ-based proteomics monitors the withering dynamics in postharvest leaves of tea plant (Camellia sinensis)[J]. Molecular genetics and genomics, 2018, 293(1):45-59.
doi: 10.1007/s00438-017-1362-9
URL
|
[2] |
宋楚君, 纵榜正, 周森杰, 等. 龙井茶加工中在制叶水分变化及其对茶叶滋味品质的影响[J]. 茶叶, 2020, 46(2):77-83.
|
[3] |
MARITIM T K, KAMUNYA S M, MIREJI P, et al. Physiological and biochemical response of tea [Camellia sinensis (L.) O. Kuntze] to water-deficit stress[J]. Journal of horticultural science and biotechnology, 2015, 90(4):395-400.
doi: 10.1080/14620316.2015.11513200
URL
|
[4] |
NYARUKOWA C, KOECH R, LOOTS T, et al. SWAPDT: A method for short-time withering assessment of probability for drought tolerance in Camellia sinensis validated by targeted metabolomics[J]. Journal of plant physiology, 2016, 198:39-48.
doi: 10.1016/j.jplph.2016.04.004
URL
|
[5] |
WANG Y, ZHENG P C, LIU P P, et al. Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling[J]. Food chemistry, 2019, 272(30):313-322.
doi: 10.1016/j.foodchem.2018.08.013
URL
|
[6] |
YU X L, LI Y C, HE C, et al. Nonvolatile metabolism in postharvest tea (Camellia sinensis L.) leaves: Effects of different withering treatments on nonvolatile metabolites, gene expression levels, and enzyme activity[J]. Food chemistry, 2020, 327:126992.
doi: 10.1016/j.foodchem.2020.126992
URL
|
[7] |
王镇恒, 詹罗九. 茶学知识读本[M]. 北京: 中国农业出版社, 2011:143-158.
|
[8] |
刘民乾. 优质茶叶生产实用技术[M]. 北京: 中国农业科学技术出版社, 2011:156-176.
|
[9] |
贾广松. 基于茶鲜叶表面可见特征与含水率变化模型研究[D]. 杭州: 浙江工业大学, 2016.
|
[10] |
虞昕磊. 鲜叶摊放方式对绿茶色、香、味品质成分代谢的影响研究[D]. 武汉: 华中农业大学, 2020.
|
[11] |
金心怡. 茶叶加工工程[M]. 北京: 中国农业出版社, 2014:36-51.
|
[12] |
尹军峰, 许勇泉, 袁海波, 等. 名优绿茶鲜叶摊放过程中主要生化成分的动态变化[J]. 茶叶科学, 2009, 29(2):102-110.
|
[13] |
金鑫, 陈俊, 许佳妮. ‘中黄1号’绿茶鲜叶摊放过程中主要生化成分变化与干茶品质形成分析[J]. 茶叶, 2020, 46(2):91-95.
|
[14] |
YU X L, HU S, HE C, et al. Chlorophyll metabolism in postharvest tea (Camellia sinensis L.) leaves: Variations in color values, chlorophyll derivatives, and gene expression levels under different withering treatments[J]. Journal of agricultural and food chemistry, 2019, 67(38):10624-10636.
doi: 10.1021/acs.jafc.9b03477
URL
|
[15] |
XU P, SU H, ZHAO S, et al. Transcriptome and phytochemical analysis reveals the alteration of plant hormones, characteristic metabolites, and related gene expression in tea (Camellia sinensis L.) leaves during withering[J]. Plants, 2020, 9(2):204.
doi: 10.3390/plants9020204
URL
|
[16] |
DONG X C, NI Y, QU Z D, et al. Prediction model of punching springback of windshield beam based on response surface method[J]. Rare metal materials and engineering, 2021, 50(5):1611-1616.
|
[17] |
叶玉龙. 萎凋/摊放对茶叶在制品主要理化特性的影响[D]. 重庆: 西南大学, 2018.
|
[18] |
郑继辉. 鲜叶摊放过程失水规律的研究[J]. 福建茶叶, 1988(4):30-33.
|
[19] |
王佳佳, 李国琰, 张雁, 等. 油茶粕中茶皂素连续多级逆流水提工艺的建立[J]. 食品科学技术学报, 2021, 39(1):153-161.
|
[20] |
尹军峰. 名优绿茶鲜叶摊放过程主要化学成分变化规律及环境影响的研究[D]. 杭州: 浙江大学, 2007.
|
[21] |
张凯农, 肖纯, 毛世宏, 等. 萎凋叶的萎凋失水规律[J]. 茶业通报, 1992(1):31-34.
|
[22] |
吴咏芳. 摊放时间对绿茶品质的影响[J]. 蚕桑茶叶通讯, 2020(3):13-16.
|
[23] |
黄藩, 董春旺, 高明珠, 等. 工夫红茶萎凋中温度对鲜叶失水率影响的预测模型[J]. 中国农学通报, 2014, 30(34):193-198.
|
[24] |
李芬, 陈春林, 田玉萍, 等. 云南不同品种大叶种茶树生化成分季节变化特征分析[J]. 食品与生物技术学报, 2022, 41(3):88-95.
|
[25] |
廖珺. 摊放(萎凋)技术对茶鲜叶游离氨基酸影响的研究进展[J]. 氨基酸和生物资源, 2016, 38(4):15-19.
|
[26] |
宋振硕, 陈键, 陈林, 等. 茶树离体春梢萎凋失水规律初步研究[J]. 茶叶科学技术, 2014(3):25-28.
|