欢迎访问《中国农学通报》,

中国农学通报 ›› 2023, Vol. 39 ›› Issue (25): 116-121.doi: 10.11924/j.issn.1000-6850.casb2022-0769

• 植物保护·农药 • 上一篇    下一篇

基于菌群毒性与气象因子的水稻稻瘟病流行程度判别分析预测

兰波1(), 阴长发1, 陈建1, 施伟韬2, 杨爱萍3, 张晓阳4, 况虹敏5, 肖慧6, 李湘民1, 杨迎青1()   

  1. 1 江西省农业科学院植物保护研究所,南昌 330200
    2 江西省植保植检局,南昌 330096
    3 江西省农业气象中心,南昌 330096
    4 九江市农业技术推广中心,江西九江 332000
    5 上高县农业农村局,江西上高 336400
    6 万安县枧头镇便民服务中心,江西万安 343811
  • 收稿日期:2022-09-05 修回日期:2022-12-04 出版日期:2023-09-05 发布日期:2023-08-28
  • 通讯作者: 杨迎青,1981年出生,山东临沂人,研究员,博士研究生,研究方向:水稻及特色作物病害防治。通信地址:330200 江西南昌市南莲路602号,Tel:0791-87090752,E-mail:yyq8295@163.com
  • 作者简介:
    兰波,男,1981年出生,江西分宜人,副研究员,博士研究生,研究方向:水稻真菌病害防治。通信地址:330200 江西南昌市南莲路602号,Tel:0791-87090752,E-mail:
  • 基金资助:
    江西省重点研发计划项目“基于菌群毒性结构的江西省水稻稻瘟病绿色防控技术研究与应用”(20202BBFL63001); 江西现代农业科研协同创新专项“优质稻、蔬菜主要病虫害绿色防控及农药减量技术研究”(JXXTCX201901); 江西现代农业科研协同创新专项“抗瘟品系Pi-zt介导的不同稻瘟病菌诱导下转录组分析”(JXXTCXBSJJ202119)

Discriminant Analysis and Prediction of Rice Blast Epidemic Based on Virulence of Magnaporthe oryzae and Meteorological Factors

LAN Bo1(), YIN Changfa1, CHEN Jian1, SHI Weitao2, YANG Aiping3, ZHANG Xiaoyang4, KUANG Hongmin5, XIAO Hui6, LI Xiangmin1, YANG Yingqing1()   

  1. 1 Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang 330200
    2 Jiangxi Province Station of Plant Protection and Quarantine, Nanchang 330096
    3 Jiangxi Agricultural Meteorological Center, Nanchang 330096
    4 Jiujiang Agricultural Technology Extension Centre, Jiujiang, Jiangxi 332000
    5 Bureau of Agriculture and Rural Affairs, Shanggao County, Shanggao, Jiangxi 336400
    6 Jiantou Town Public Service Centre of Wan’an County, Wan’an, Jiangxi 343811
  • Received:2022-09-05 Revised:2022-12-04 Online:2023-09-05 Published:2023-08-28

摘要:

稻瘟病是水稻上的一种毁灭性病害,利用科学的模型函数对稻瘟病发生流行程度进行预测预报是稻瘟病防控的有效方式。以降雨天数、降雨量、温度、稻瘟病菌致病力、无毒基因为变量参数,以稻瘟病发生指数为因变量,建立江西稻区稻瘟病发生流行程度判别模型函数。结果表明,稻瘟病发生指数与降雨天数、降雨量以及稻瘟病菌致病力有显著正相关性,与稻瘟病菌无毒基因频率、温度表现为显著负相关性;构建的预测函数模型对稻瘟病的发生级别预测回代检验正确判别率较高(80%以上),并且判别结果不会出现指数越级滑动。可将该方法作为水稻稻瘟病预测预报的参考依据,以指导水稻安全生产。

关键词: 水稻稻瘟病, 判别分析, 预测模型, 气象因子, 菌群毒性

Abstract:

Rice blast is a destructive disease of rice. Forecasting the epidemics of rice blast by using scientific model function is an effective way to prevent and control rice blast. Using the rainfall days, rainfall amount, temperature, pathogenicity of Magnaporthe oryzae, and avirulence gene as variables and the occurrence index of rice blast disease as the dependent variable, a model function for discriminating the epidemic of rice blast disease in Jiangxi Province was established. The results showed that the occurrence index of rice blast was positively correlated with the rainfall days, rainfall amount and the pathogenicity of M. oryzae, while the avirulence gene frequency and temperature were negatively correlated. The prediction function model had a high correct discrimination rate (above 80%) for the occurrence grade of rice blast, and the discrimination result did not show the exponential sliding. Therefore, this model function could be used as a method for the prediction of rice blast disease to guide the safe production of rice.

Key words: rice blast, discriminant analysis, prediction model, meteorological factor, virulence of Magnaporthe oryzae