| [1] | GUO S, ZHAO S, SUN H, et al.  Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits[J]. Nat genet, 2019, 51(11):1616-1623.  doi: 10.1038/s41588-019-0518-4    
																																																	pmid: 31676863
 | 
																													
																						| [2] | HUANG S, LI R, ZHANG Z, et al.  The genome of the cucumber, Cucumis sativus L.[J]. Nat genet, 2009, 41(12):1275-1281. | 
																													
																						| [3] | ZHANG H, LI X, YU H, et al.  A high-quality melon genome assembly provides insights into genetic basis of fruit trait improvement[J]. Science, 2019, 22:16-27. | 
																													
																						| [4] | MA L, WANG Q, ZHENG Y, et al.  Cucurbitaceae genome evolution, gene function and molecular breeding[J]. Hortic res, 2022, 9:1-24. | 
																													
																						| [5] | DING X S, MANNAS S W, BISHOP B A, et al.  An improved brome mosaic virus silencing vector: greater insert stability and more extensive VIGS[J]. Plant physiol, 2018, 176(1):496-510. | 
																													
																						| [6] | KANT R, DASGUPTA I. Gene silencing approaches through virus-based vectors: speeding up functional genomics in monocots[J]. Plant mol biol, 2019, 100(1-2):3-18.  doi: 10.1007/s11103-019-00854-6    
																																																	pmid: 30850930
 | 
																													
																						| [7] | XIE W, MARTY D M, XU J, et al.  Simultaneous gene expression and multi-gene silencing in Zea mays using maize dwarf mosaic virus[J]. BMC plant biol, 2021, 21(1):208. | 
																													
																						| [8] | ZHOU T, DONG L, JIANG T, et al.  Silencing specific genes in plants using virus-induced gene silencing (VIGS) vectors, Wang A, Li Y, editor, Plant Virology: Methods and Protocols[M]. New York, NY: Springer US, 2022:149-161. | 
																													
																						| [9] | IGARASHI A, YAMAGATA K, SUGAI T, et al.  Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes[J]. Virology, 2009, 386(2):407-416. | 
																													
																						| [10] | ZHAO F, LIM S, IGORI D, et al.  Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants[J]. Virology, 2016, 492:166-178.  doi: 10.1016/j.virol.2016.02.025    
																																																	pmid: 26950504
 | 
																													
																						| [11] | BU R, WANG R, WEI Q, et al.  Silencing of glycerol-3-phosphate acyltransferase 6 (GPAT6) gene using a newly established virus induced gene silencing (VIGS) system in cucumber alleviates autotoxicity mimicked by cinnamic acid (CA)[J]. Plant and soil, 2019, 438(1):329-346. | 
																													
																						| [12] | LIAO J J, WANG C H, XING Q J, et al.  Overexpression and VIGS system for functional gene validation in oriental melon (Cucumis melo var. makuwa Makino)[J]. Plant cell, tissue and organ culture (pctoc), 2019, 137(2):275-284. | 
																													
																						| [13] | LIU M, LIANG Z, ARANDA M A, et al.  A cucumber green mottle mosaic virus vector for virus-induced gene silencing in cucurbit plants[J]. Plant methods, 2020, 16(9):1-13. | 
																													
																						| [14] | CHEN J C, JIANG C Z, GOOKIN T E, et al.  Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence[J]. Plant mol biol, 2004, 55(4):521-530. | 
																													
																						| [15] | LIU Y, SCHIFF M, DINESH-KUMAR S P. Virus-induced gene silencing in tomato[J]. Plant j, 2002, 31(6):777-786.  doi: 10.1046/j.1365-313x.2002.01394.x    
																																																	pmid: 12220268
 | 
																													
																						| [16] | LIU Y, SCHIFF M, DINESH-KUMAR S P.  Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus[J]. Plant j, 2004, 38(5):800-809.  pmid: 15144381
 | 
																													
																						| [17] | RATCLIFF F, MARTIN-HERNANDEZ A M, BAULCOMBE D C. Technical advance. tobacco rattle virus as a vector for analysis of gene function by silencing[J]. Plant j, 2001, 25(2):237-245.  doi: 10.1046/j.0960-7412.2000.00942.x    
																																																	pmid: 11169199
 | 
																													
																						| [18] | RYU C M, ANAND A, KANG L, et al.  Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species[J]. Plant j, 2004, 40(2):322-331. | 
																													
																						| [19] | HEIN I, BARCISZEWSKA-PACAK M, HRUBIKOVA K, et al.  Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley[J]. Plant physiol, 2005, 138(4):2155-2164.  doi: 10.1104/pp.105.062810    
																																																	pmid: 16040663
 | 
																													
																						| [20] | SCOFIELD S R, HUANG L, BRANDT A S, et al.  Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway[J]. Plant physiol, 2005, 138(4):2165-2173.  doi: 10.1104/pp.105.061861    
																																																	pmid: 16024691
 | 
																													
																						| [21] | ZHANG J, YU D, ZHANG Y, et al.  Vacuum and co-cultivation agroinfiltration of (germinated) seeds results in tobacco rattle virus (TRV) mediated whole-plant virus-induced gene silencing (VIGS) in wheat and maize[J]. Front plant sci, 2017, 8:1-12. | 
																													
																						| [22] | CLOUTIER S, MCCALLUM B D, LOUTRE C, et al.  Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family[J]. Plant mol biol, 2007, 65(1-2): 93-106. | 
																													
																						| [23] | ZHANG J, WANG F, ZHANG C, et al.  A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response[J]. Plant cell rep, 2018, 37(8):1091-1100.  doi: 10.1007/s00299-018-2294-5    
																																																	pmid: 29868984
 | 
																													
																						| [24] | SUNDARESHA S, SREEVATHSA R, BALOL G B, et al.  A simple, novel and high efficiency sap inoculation method to screen for tobacco streak virus[J]. Physiol mol biol plants, 2012, 18(4):365-369. | 
																													
																						| [25] | AL ABDALLAT A M, AL DEBEI H S, ASMAR H, et al.  An efficient in vitro-inoculation method for tomato yellow leaf curl virus[J]. Virol j, 2010, 7(84):1-9. | 
																													
																						| [26] | XIE Y J T, ZHOU X. Agroinoculation shows tobacco leaf curl Yunnan virus is a monopartite begomovirus[J]. Eur j plant pathol, 2006, 115:369-375. | 
																													
																						| [27] | LIU Q, XU K, YI L, et al.  A rapid, simple, and highly efficient method for VIGS and in vitro-inoculation of plant virus by INABS applied to crops that develop axillary buds and can survive from cuttings[J]. BMC plant biol, 2021, 21(1):545.  doi: 10.1186/s12870-021-03331-9    
																																																	pmid: 34800968
 | 
																													
																						| [28] | SENTHIL-KUMAR M, MYSORE K S. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato[J]. Plant biotechnol j, 2011, 9(7):797-806. | 
																													
																						| [29] | FU D Q, ZHU B Z, ZHU H L, et al.  Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity[J]. Mol cells, 2006, 21(1):153-160. | 
																													
																						| [30] | PATIL B L, FAUQUET C M. Light intensity and temperature affect systemic spread of silencing signal in transient agroinfiltration studies[J]. Mol plant pathol, 2015, 16(5):484-494.  doi: 10.1111/mpp.12205    
																																																	pmid: 25220764
 | 
																													
																						| [31] | 郝梦媛, 杭琦, 师恭曜. VIGS基因沉默技术在作物基因功能研究中的应用与展望[J]. 中国农业科技导报, 2022, 24(1):1-13.  doi: 10.13304/j.nykjdb.2020.0781
 | 
																													
																						| [32] | 张琴琴, 纪兆林, 朱峰. 病毒诱导的基因沉默技术在双子叶植物中的应用研究进展[J]. 河南农业科学, 2020, 49(2):1-8. | 
																													
																						| [33] | YAMAGISHI N, YOSHIKAWA N. Efficient virus-induced gene silencing system in pumpkin (Cucurbita maxima) using apple latent spherical virus vector[J]. Journal of virological methods, 2022, 301:114456. | 
																													
																						| [34] | NISHII K, FEI Y, HUDSON A, et al.  Virus-induced gene silencing in Streptocarpus rexii (Gesneriaceae)[J]. Mol biotechnol, 2020, 62(6-7):317-325. | 
																													
																						| [35] | CHEUK A, HOUDE M. A rapid and efficient method for uniform gene expression using the barley stripe mosaic virus[J]. Plant methods, 2017, 13(24):1-11. |