| [1]  Yang T,SPoovaiah BW. Calcium/calmodulin-mediatedSsignalSnetworkSinSplants[J]. Trends in Plant Science,2003,8(10):505-512. [2]  简令成,王红.钙(Ca2 ) 在植物抗寒中的作用[J].中国细胞生物学学报,2002,03(3):166-171
 [3]  Zeng H, Xu L, Singh A, et al. Involvement of Calmodulin and Calmodulin-like Proteins in Plant Responses to Abiotic Stresses[J]. Frontiers in Plant Science,2015,6:600.
 [4]  张玉秀,彭晓静,柴团耀,等.植物液泡膜阳离子/H 反向转运蛋白结构和功能研究进展[J].生物工程学报,2011,27(4):546-560.
 [5]  Swarbreck SM,SCola?o R,SDavies JM. PlantScalcium-permeableSchannels[J]. Plant Physiology,2013,163(2):514-522
 [6]  Mohammad Mahbub I, Shintaro M, Mohammad Anowar H, et al. Roles of AtTPC1, vacuolar two pore channel 1, in Arabidopsis stomatal closure[J]. Plant   Cell Physiology,2010,51(2):302-311(10).
 [7]  Kenji H, Mikako S, Hideaki M, et al.SIida K,SIida H. Functional analysis of a rice putative voltage-dependent Ca2  channel, OsTPC1, expressed in yeast cells lacking its homologous gene CCH1[J]. Plant   Cell Physiology,2004,45(4):496-500.
 [8]  宋秀芬,洪剑明.植物细胞中钙信号的时空多样性与信号转导[J].植物学报,2001,18(4):436-444.
 [9]  Kudla J,SBatistic O,SHashimoto K. Calcium signals: the lead currency of plant information processing[J]. Plant Cell,2010,22(3):541-63.
 [10]  Briskin DP. Ca-translocatingSATPaseSof theSplantSplasma membrane[J]. Plant Physiology,1990,94(2):397-400.
 [11]  Pfeiffer W, Hager A. A Ca2 -ATPase and a Mg2 /H -antiporter are present on tonoplast membranes from roots of Zea mays L[J]. Planta,1993,191(3):377-385.
 [12]  Hsieh WL,SPierce WS,SSze H. Calcium-pumpingSATPasesSin vesicles from carrot cells : stimulation by calmodulin or phosphatidylserine, and formation of a 120 kilodalton phosphoenzyme[J]. PlantSPhysiology,1991,97(4):1535-1544.
 [13]  H. Li?, E. W. Weiler. Ion-translocating ATPases in tendrils of Bryonia dioica Jacq[J]. Planta,1994,194(2):169-180.
 [14]  Hong B,SIchida A,SWang Y,SGens JS,SPickard BG,SHarper JF. IdentificationSof a calmodulin-regulated Ca2 -ATPaseSin the endoplasmic reticulum[J]. PlantSPhysiology,1999,119(4):1165-76.
 [15]  单喆,张欣欣,高野哲夫,柳参奎.植物Cation/H 反向转运蛋白研究进展[J].基因组学与应用生物学,2012,3(1):303-309.
 [16]  Zhang Y,SPeng X,SChai T,Set al. Structure and function of tonoplast Cation/H  antiporters in plant: a review[J]. Chinese Journal of Biotechnology,2011,27(4):546-560.
 [17]  Takehiro K, Masayoshi M. Residues in Internal Repeats of the Rice Cation/H   Exchanger Are Involved in the Transport and Selection of Cations[J].Journal of Biological Chemistry,2004,279(1):812-819.
 [18]  Lian X, Kashif Rafiq Z, Liangrong H, et al. GhCAX3 Gene, a Novel Ca2 /H  Exchanger from Cotton, Confers Regulation of Cold Response and ABA Induced Signal Transduction[J]. Plos One,2013,8(6):e66303-e66303.
 [19]  Zhang L,SHao J,SBao M,et al. Cloning and characterization of a Ca2 /H  exchanger from the halophyte Salicornia europaea L[J]. Plant Physiology   Biochemistry,2015,96:321-328
 [20]  Galon Y, Finkler A, Fromm H. Calcium-Regulated Transcription in Plants[J]. 分子植物:英文版,2010,4(4):653-669.
 [21]  Zhang Q, Jiang N, Wang GL, et al. Advances in Understanding Cold Sensing and the Cold-Responsive Network in Rice[J]. Advances in Crop Science and Technology,2013,1:104.
 [22]  刘芝华,吴相钰.水稻钙调蛋白基因的克隆及结构分析[J].生物工程学报,1993,9(4):309-313.
 [23]  Boonburapong B, Buaboocha T. Genome-Wide Identification And Analyses Of The Rice Calmodulin And Related Potential Calcium Sensor Proteins[J]. Advances in Crop Science and Technology,2007,7(1):4.
 [24]  Mccormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytologist,2003,159(3):585-598(14).
 [25]  Hoeflich KP1,SIkura M. Calmodulin in action: diversity in target recognition and activation mechanisms[J]. Cell,2002,108(6):739-742.
 [26]  Yue R, Lu C, Sun T, et al. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses[J]. Frontiers in Plant Science,2015,6:576.
 [27]  Kudla J,SXu Q,SHarter K,Set al. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(8):4718-4723.
 [28]  Mohanta T K, Mohanta N, Mohanta Y K, et al. Genome-wide identification of Calcineurin B-Like (CBL) gene family of plants reveals novel conserved motifs and evolutionary aspects in calcium signaling events[J]. Bmc Plant Biology,2015,15:1-15.
 [29]  Masamichi N, Akira N, Nozomu K, et al.The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana[J]. Journal of Biological Chemistry,2003,278(43):42240-42246.
 [30]  Revett S P, Nelson D J, King G, et al. Characterization of a helix-loop-helix (EF hand) motif of silver hake parvalbumin isoform B[J]. Protein Science,1997,6(11):2397–2408.
 [31]  汤湖斌,闵康康,徐玲玲,等.CBL-CIPKs信号系统的研究进展[J].中国细胞生物学学报,2015,1:100-105.
 [32]  Shi J,SKim KN,SRitz O,Set al. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis[J]. Plant Cell,1999,11(12):2393-2405.
 [33]  Harmon A C, Putnam-Evans C, Cormier M J. A calcium-dependent but calmodulin-independent protein kinase from soybean[J]. Plant Physiology,1987,83(4):830-837.
 [34]  Martín M L, Busconi L. A rice membrane-bound calcium-dependent protein kinase is activated in response to low temperature[J]. Plant Physiology, 2001,125(3):1442-1449.
 [35]  Boudsocq M, Sheen J. CDPKs in immune and stress signaling[J].Trends in Plant Science,2013,18(1):30–40.
 [36]  陈硕,陈珈.植物中钙依赖蛋白激酶(CDPKs)的结构与功能[J].植物学报,2001,18(2):143-148.
 [37]  Komatsu S, Li W, Konishi H, et al. Characterization of a Ca~(2 )-Dependent Protein Kinase from Rice Root: Differential Response to Cold and Regulation by Abscisic Acid[J]. Biological   Pharmaceutical Bulletin,2001,24(11):1316-9.
 [38]  Qi Z, Chen Q, Wang S, et al. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci[J]. Rice,2014,7(1):24-24.
 [39]  梁颖,王三根.Ca2 对低温下水稻幼苗膜的保护作用[J].作物学报,2001,27(1):59-64
 [40]  王芳,王丹丹,赵娟,等.钙对低温胁迫下玉米幼苗氧化损伤的保护作用[J].干旱地区农业研究,2014, 01(1):155-160.
 [41]  Los DA, Murata N. Membrane fluidity and its roles in the perception of environmental signals[J]. Biochimica Et Biophysica Acta,2004,1666(1):142–157
 [42]  Yun K Y, Park M R, Mohanty B, et al. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress[J]. Bmc Plant Biology,2010,10(1):16-16
 [43]  龚伟,王伯初.钙离子在植物抵抗非生物胁迫中的作用[J].生命的化学,2011,01:107-111.
 [44]  Los D A, Murata N. Membrane fluidity and its roles in the perception of environmental signals[J]. Biochimica Et Biophysica Acta,2004,1666(1-2):142–157.
 [45]  Dametto A, Sperotto R A, Adamski J M, et al. Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes[J]. Plant Science,2015,238:1–12.
 [46]  Ma Y,SDai X,SXu Y,SLuo W,Set al. COLD1 Confers Chilling Tolerance in Rice[J]. Cell,2015,160(6):1209–1221.
 [47]  Shi Y, Gong Z. One SNP in COLD1 Determines Cold Tolerance during Rice Domestication[J]. Journal of Genetics   Genomics,2015,4(4):133-134.
 [48]  Manishankar P, Kudla J. Cold Tolerance Encoded in One SNP[J]. Cell,2015,160(6):1045–1046.
 [49]  Shi Y T, Yang S H. COLD1: a cold sensor in rice[J]. Science China Life Sciences,2015,58(4):1-2.
 [50]  Huda K M K, Banu M S A, Yadav S, et al. Salinity and drought tolerant OsACA6 enhances cold tolerance in transgenic tobacco by interacting with stress-inducible proteins[J]. Plant Physiology   Biochemistry,2014,82(3):229–238.
 [51]  Xi J,SQiu Y,SDu L,SPoovaiah BW. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses[J]. Plant Science,2012,185-186(4):274–280.
 [52]  Xu G Y, Rocha P S C F, Wang M L, et al. A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis[J]. Planta,2011,234(1):47-59.
 [53]  Zheng L L, Gao Z, Wang J, et al. Molecular cloning and functional characterization of a novel CBL-interacting protein kinase NtCIPK2 in the halophyte Nitraria tangutorum[J].Genetics   Molecular Research Gmr,2014,13(3):4716-4728.
 [54]  Jingli Y, Fangfang N, Wu-Zhen L, et al. Arabidopsis CIPK14 positively regulates glucose response[J]. Biochemical   Biophysical Research Communications,2014,450(4):1679-1683.
 [55]  Conglin H, Shuo D, Hua Z, et al. CIPK7 is involved inScoldSresponse by interacting with CBL1 in Arabidopsis thaliana[J]. Plant Science An International Journal of Experimental Plant Biology,181(1):57-64.
 [56]  Dubrovina A S, Kiselev K V, Khristenko V S, et al. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance[J]. Journal of Plant Physiology,2015,185:1-12.
 [57]  Philipp W, Britta E, Tina R. ZmCPK1, a calcium-independent kinase member of the Zea mays?CDPK gene family, functions as a negative regulator in cold stress signalling[J]. Plant Cell   Environment,2015,38(3):544-558.
 [58]  Abbasi F,SOnodera H,SToki S,et al. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath[J]. Plant Molecular Biology,2004,55(4):541-552.
 [59]  Komatsu S,SYang G,SKhan M,Set al. Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants[J]. Molecular Genetics   Genomics Mgg,2007,277(6):713-723.
 [60]  Saijo Y,SHata S,SKyozuka J,Set al. Over-expression of a single Ca2 -dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]. Plant Journal for Cell   Molecular Biology,2000,23(3):319-27.
 [61]  Saijo Y,SKinoshita N,SIshiyama K,Set al. A Ca2 -Dependent Protein Kinase that Endows Rice Plants with Cold- and Salt-Stress Tolerance Functions in Vascular Bundles[J].Plant   Cell Physiology,2001,42(11):1228-1233.
 
 |