中国农学通报 ›› 2020, Vol. 36 ›› Issue (30): 75-81.doi: 10.11924/j.issn.1000-6850.casb2020-002
所属专题: 生物技术
收稿日期:
2020-04-12
修回日期:
2020-06-23
出版日期:
2020-10-25
发布日期:
2020-10-16
通讯作者:
李海英
作者简介:
张嘉麟,男,1997年出生,黑龙江佳木斯人,硕士研究生,研究方向:植物分子生物学。通信地址:150080 黑龙江省哈尔滨市学府路74号 黑龙江大学生命科学学院320室,Tel:18846437879,E-mail: 基金资助:
Zhang Jialin1,2(), Li Haiying1,2(
)
Received:
2020-04-12
Revised:
2020-06-23
Online:
2020-10-25
Published:
2020-10-16
Contact:
Li Haiying
摘要:
泛素化修饰是真核生物中一种重要的蛋白质翻译后修饰,几乎参与调控细胞内所有重要的生命活动过程。近年来,随着泛素化蛋白质富集技术和质谱技术的不断发展,泛素化蛋白质组学研究取得了重大进展。目前泛素化蛋白质组学研究多集中在动物和酵母中,而在植物中开展的相对较少。为了总结植物中泛素化蛋白质组学的最新研究成果,本文对泛素化修饰、质谱法鉴定泛素化位点、泛素化蛋白的富集方法及泛素化蛋白质组学在植物光调节、激素处理和逆境胁迫条件下的应用研究进行综述,为泛素化修饰在植物领域的最新研究提供理论基础。
中图分类号:
张嘉麟, 李海英. 泛素化修饰及其在植物蛋白质组学中的研究进展[J]. 中国农学通报, 2020, 36(30): 75-81.
Zhang Jialin, Li Haiying. Ubiquitin Modification and Its Research Progress in Plant Proteomics[J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 75-81.
蛋白质/ 肽段 | UBD | 特异性 |
---|---|---|
NEMO | UBA | M1>K63 泛素链 |
TAB2 | NZF | K63泛素链 |
Ubiquilin-1 | UBA | 所有泛素链 |
MultiDsk | UBA | 所有泛素链 |
RAP80 | 双重UIM | K63泛素链 |
TRABID | NZF | K29和K33泛素链 |
蛋白质/ 肽段 | UBD | 特异性 |
---|---|---|
NEMO | UBA | M1>K63 泛素链 |
TAB2 | NZF | K63泛素链 |
Ubiquilin-1 | UBA | 所有泛素链 |
MultiDsk | UBA | 所有泛素链 |
RAP80 | 双重UIM | K63泛素链 |
TRABID | NZF | K29和K33泛素链 |
植物材料 | 组织 | 处理条件 | 富集方法 | 结果 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
拟南芥 (Arabidopsis thaliana L.) | 7日龄的黄化拟南芥幼苗 | 红光照射 | GST-UBA亲和介质法泛素偶联His标签法 | 照射前130种泛素化蛋白照射后302种泛素化蛋白 | [ | |||
玉米(Zea mays L.) | 7日龄玉米 黄化幼苗 | 光照射 | K-ε-GG抗体法 | 1053种泛素化蛋白 1926个泛素化位点 78个差异表达泛素化位点 | [ | |||
矮牵牛 (Petunia hybrida Mitchell) | 花冠 | 乙烯处理 | K-ε-GG抗体法 | 284个下调蛋白 233个上调蛋白 | [ | |||
非洲水稻 (Oryza glaberrima) | 12日龄的 非洲水稻幼苗 | 45℃ 高温处理 | K-ε-GG抗体法 | 264个上调肽段 147个下调肽段 | [ | |||
马铃薯四倍体栽培品种 (Solanum tuberosum L.) | 块茎培育的 组培苗 | 聚乙二醇 处理模拟 干旱胁迫 | K-ε-GG抗体法 | 3个下调位点 22个上调位点 | [ | |||
茶 (Camellia sinensis L.) | 两年龄的茶 | 干旱处理 | K-ε-GG抗体法 | 14个上调位点 123个下调位点 | [ | |||
水稻(Oryza sativa L.) | 7日龄 水稻幼苗 | 几丁质处理 | K-ε-GG抗体法 | 144个位点上调 167个位点下调 | [ | |||
flg22处理 | K-ε-GG抗体法 | 151个为位点上调 179个位点下调 |
植物材料 | 组织 | 处理条件 | 富集方法 | 结果 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
拟南芥 (Arabidopsis thaliana L.) | 7日龄的黄化拟南芥幼苗 | 红光照射 | GST-UBA亲和介质法泛素偶联His标签法 | 照射前130种泛素化蛋白照射后302种泛素化蛋白 | [ | |||
玉米(Zea mays L.) | 7日龄玉米 黄化幼苗 | 光照射 | K-ε-GG抗体法 | 1053种泛素化蛋白 1926个泛素化位点 78个差异表达泛素化位点 | [ | |||
矮牵牛 (Petunia hybrida Mitchell) | 花冠 | 乙烯处理 | K-ε-GG抗体法 | 284个下调蛋白 233个上调蛋白 | [ | |||
非洲水稻 (Oryza glaberrima) | 12日龄的 非洲水稻幼苗 | 45℃ 高温处理 | K-ε-GG抗体法 | 264个上调肽段 147个下调肽段 | [ | |||
马铃薯四倍体栽培品种 (Solanum tuberosum L.) | 块茎培育的 组培苗 | 聚乙二醇 处理模拟 干旱胁迫 | K-ε-GG抗体法 | 3个下调位点 22个上调位点 | [ | |||
茶 (Camellia sinensis L.) | 两年龄的茶 | 干旱处理 | K-ε-GG抗体法 | 14个上调位点 123个下调位点 | [ | |||
水稻(Oryza sativa L.) | 7日龄 水稻幼苗 | 几丁质处理 | K-ε-GG抗体法 | 144个位点上调 167个位点下调 | [ | |||
flg22处理 | K-ε-GG抗体法 | 151个为位点上调 179个位点下调 |
[1] |
van Huizen M, Kikkert M. The Role of Atypical Ubiquitin Chains in the Regulation of the Antiviral Innate Immune Response[J]. Front Cell Dev Biol, 2019,7:392.
doi: 10.3389/fcell.2019.00392 URL pmid: 32039206 |
[2] |
Elia A E, Boardman A P, Wang D C, et al. Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the DNA Damage Response[J]. Mol Cell, 2015,59(5):867-81.
doi: 10.1016/j.molcel.2015.05.006 URL pmid: 26051181 |
[3] |
Yau R G, Doerner K, Castellanos E R, et al. Assembly and Function of Heterotypic Ubiquitin Chains in Cell-Cycle and Protein Quality Control[J]. Cell, 2017,171(4):918-933.e20.
doi: 10.1016/j.cell.2017.09.040 URL pmid: 29033132 |
[4] |
Heger K, Wickliffe K E, Ndoja A, et al. OTULIN limits cell death and inflammation by deubiquitinating LUBAC[J]. Nature, 2018,559(7712):120-124.
URL pmid: 29950720 |
[5] |
Lu Y, Lee B H, King R W, et al. Substrate degradation by the proteasome: a single-molecule kinetic analysis[J]. Science, 2015,348(6231):1250834.
URL pmid: 25859050 |
[6] |
Stone S L. Role of the Ubiquitin Proteasome System in Plant Response to Abiotic Stress[J]. Int Rev Cell Mol Biol, 2019,343:65-110.
doi: 10.1016/bs.ircmb.2018.05.012 URL pmid: 30712675 |
[7] |
Dittmar G, Winklhofer K F. Linear Ubiquitin Chains: Cellular Functions and Strategies for Detection and Quantification[J]. Front Chem, 2019,7:915.
doi: 10.3389/fchem.2019.00915 URL pmid: 31998699 |
[8] |
McClellan A J, Laugesen S H, Ellgaard L. Cellular functions and molecular mechanisms of non-lysine ubiquitination[J]. Open Biol, 2019,9(9):190147.
doi: 10.1098/rsob.190147 URL pmid: 31530095 |
[9] | 李贞, 赵博. 解密泛素链的亲和工具[J]. 生物化学与生物物理进展, 2019,46(09):845-857. |
[10] | Fennell L M, Rahighi S, Ikeda F. Linear ubiquitin chain-binding domains[J]. FEBS, 2018,285(15):2746-2761. |
[11] |
Fan Q, Wang Q, Cai R, et al. The ubiquitin system: orchestrating cellular signals in non-small-cell lung cancer[J]. Cell Mol Biol Lett, 2020,25:1.
URL pmid: 31988639 |
[12] | 周小露. 马立克氏肿瘤的泛素化组分析及CDK1泛素化的鉴定[D]. 长春:吉林大学, 2019. |
[13] |
Yan N, Doelling J H, Falbel T G, et al. The ubiquitin-specific protease family from Arabidopsis. AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine[J]. Plant physiology, 2000,124(4):1828-1843.
doi: 10.1104/pp.124.4.1828 URL pmid: 11115897 |
[14] |
Moon Y K, Hong J, Cho Y, et al. Structure and expression of OsUBP6, an ubiquitin-specific protease 6 homolog in rice (Oryza sativa L.)[J]. Molecules and cells, 2009,28(5):463-472.
doi: 10.1007/s10059-009-0138-4 URL pmid: 19855938 |
[15] |
Sowa M E, Bennett E J, Gygi S P, et al. Defining the human deubiquitinating enzyme interaction landscape[J]. Cell, 2009,138(2):389-403.
doi: 10.1016/j.cell.2009.04.042 URL pmid: 19615732 |
[16] | 兰秋艳, 高媛, 李衍常, 等. 泛素、泛素链和蛋白质泛素化研究进展[J]. 生物工程学报, 2016,32(01):14-30. |
[17] |
Peng J, Schwartz D, Elias J E, et al. A proteomics approach to understanding protein ubiquitination[J]. Nature biotechnology, 2003,21(8):921-926.
doi: 10.1038/nbt849 URL pmid: 12872131 |
[18] | 李衍常. 泛素链和泛素化底物修饰位点特异性的定量蛋白质组学研究[D]. 北京:中国人民解放军军事医学科学院, 2016. |
[19] |
Zhang Y, Fonslow B R, Shan B, et al. Protein analysis by shotgun/bottom-up proteomics[J]. Chemical reviews, 2013,113(4):2343-2394.
doi: 10.1021/cr3003533 URL pmid: 23438204 |
[20] |
Meierhofer D, Wang X, Huang L, et al. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry[J]. Journal of proteome research, 2008,7(10):4566-4576.
doi: 10.1021/pr800468j URL pmid: 18781797 |
[21] |
Ota K, Kito K, Iemura S, et al. A parallel affinity purification method for selective isolation of polyubiquitinated proteins[J]. Proteomics, 2008,8(15):3004-3007.
doi: 10.1002/pmic.200800271 URL pmid: 18615433 |
[22] |
Hjerpe R, Aillet F, Lopitz-Otsoa F, et al. Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities[J]. EMBO reports, 2009,10(11):1250-1258.
doi: 10.1038/embor.2009.192 URL pmid: 19798103 |
[23] |
Shi Y, Chan D W, Jung S Y, et al. A data set of human endogenous protein ubiquitination sites[J]. Molecular & cellular proteomics: MCP, 2011,10(5):M110.002089-M110.002089.
doi: 10.1074/mcp.M110.004994 URL pmid: 21311038 |
[24] |
Emmerich, Cohen C H P. Optimising methods for the preservation, capture and identification of ubiquitin chains and ubiquitylated proteins by immunoblotting[J]. Biochem Biophys Res Commun, 2015,466(1):1-14.
doi: 10.1016/j.bbrc.2015.08.109 URL pmid: 26325464 |
[25] |
Matsumoto M, Hatakeyama S, Oyamada K, et al. Large-scale analysis of the human ubiquitin-related proteome[J]. Proteomics, 2005,5(16):4145-4151.
doi: 10.1002/pmic.200401280 URL pmid: 16196087 |
[26] |
Matsumoto M L, Wickliffe K E, Dong K C, et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody[J]. Molecular cell, 2010,39(3):477-484.
doi: 10.1016/j.molcel.2010.07.001 URL pmid: 20655260 |
[27] |
Newton K, Matsumoto M L, Wertz I E, et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies[J]. Cell, 2008,134(4):668-678.
doi: 10.1016/j.cell.2008.07.039 URL pmid: 18724939 |
[28] |
Wang H, Matsuzawa A, Brown S A, et al. Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(51):20197-20202.
doi: 10.1073/pnas.0810461105 URL pmid: 19091944 |
[29] |
Xu G, Paige J S, Jaffrey S R. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling[J]. Nature biotechnology, 2010,28(8):868-873.
doi: 10.1038/nbt.1654 URL pmid: 20639865 |
[30] |
Wagner S A, Beli P, Weinert B T, et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles[J]. Molecular & cellular proteomics : MCP, 2011,10(10):M111.013284-M111.013284.
doi: 10.1074/mcp.M110.007138 URL pmid: 21715321 |
[31] |
Udeshi N D, Svinkina T, Mertins P, et al. Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments[J]. Molecular & cellular proteomics: MCP, 2013,12(3):825-831.
doi: 10.1074/mcp.O112.027094 URL pmid: 23266961 |
[32] |
Anania V G, Pham V C, Huang X D, et al. Peptide level immunoaffinity enrichment enhances ubiquitination site identification on individual proteins[J]. Molecular & cellular proteomics : MCP, 2014,13(1):145-156.
URL pmid: 24142993 |
[33] |
Maor R, Jones A, Nuhse T S, et al. Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants[J]. Molecular & cellular proteomics: MCP, 2007,6(4):601-610.
URL pmid: 17272265 |
[34] |
Manzano C, Abraham Z, Lopez G, et al. Identification of ubiquitinated proteins in Arabidopsis[J]. Plant molecular biology, 2008,68(1-2):145-158.
doi: 10.1007/s11103-008-9358-9 URL |
[35] |
Igawa T, Fujiwara M, Takahashi H, et al. Isolation and identification of ubiquitin-related proteins from Arabidopsis seedlings[J]. Journal of experimental botany, 2009,60(11):3067-3073.
doi: 10.1093/jxb/erp134 URL pmid: 19429840 |
[36] |
Saracco S A, Hansson M, Scalf M, et al. Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis[J]. The Plant journal : for cell and molecular biology, 2009,59(2):344-358.
doi: 10.1111/tpj.2009.59.issue-2 URL |
[37] |
Kim D Y, Scalf M, Smith L M, et al. Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis[J]. Plant Cell, 2013,25(5):1523-40.
doi: 10.1105/tpc.112.108613 URL |
[38] |
Xie X, Kang H, Liu W, et al. Comprehensive profiling of the rice ubiquitome reveals the significance of lysine ubiquitination in young leaves[J]. Journal of proteome research, 2015,14(5):2017-2025.
doi: 10.1021/pr5009724 URL pmid: 25751157 |
[39] |
Zhang N, Zhang L, Shi C, et al. Comprehensive profiling of lysine ubiquitome reveals diverse functions of lysine ubiquitination in common wheat[J]. Scientific reports, 2017,7(1):13601-13601.
doi: 10.1038/s41598-017-13992-y URL pmid: 29051560 |
[40] |
Lu J, Xu Y. Fan Y, et al. Proteome and Ubiquitome Changes during Rose Petal Senescence[J]. Int J Mol Sci, 2019,20(24):6108.
doi: 10.3390/ijms20246108 URL |
[41] |
Song Y, Shi X, Zou Y, et al. Proteome-wide identification and functional analysis of ubiquitinated proteins in peach leaves[J]. Sci Rep, 2020,10(1):2447.
doi: 10.1038/s41598-020-59342-3 URL pmid: 32051488 |
[42] |
Aguilar-Hernández V, Kim D Y, Stankey R J, et al. Mass Spectrometric Analyses Reveal a Central Role for Ubiquitylation in Remodeling the Arabidopsis Proteome during Photomorphogenesis[J]. Mol Plant, 2017,10(6):846-865.
URL pmid: 28461270 |
[43] |
Wang Y F, Chao Q, Li Z, et al. Large-scale Identification and Time-course Quantification of Ubiquitylation Events During Maize Seedling De-etiolation[J]. Genomics Proteomics Bioinformatics, 2020.
URL pmid: 32561469 |
[44] |
Guo J, Liu J, Wei Q, et al. Proteomes and Ubiquitylomes Analysis Reveals the Involvement of Ubiquitination in Protein Degradation in Petunias[J]. Plant physiology, 2017,173(1):668-687.
doi: 10.1104/pp.16.00795 URL pmid: 27810942 |
[45] |
Li X M, Chao D, Wu Y, et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature genetics, 2015,47(7):827-833.
doi: 10.1038/ng.3305 URL pmid: 25985140 |
[46] | 唐勋. 马铃薯泛素化蛋白质组学分析及StPUB27基因功能研究[D]. 兰州:甘肃农业大学, 2018. |
[47] |
Xie H, Wang Y, Ding Y, et al. Global Ubiquitome Profiling Revealed the Roles of Ubiquitinated Proteins in Metabolic Pathways of Tea Leaves in Responding to Drought Stress[J]. Sci Rep, 2019,9(1):4286.
doi: 10.1038/s41598-019-41041-3 URL pmid: 30862833 |
[48] |
Chen X L, Xie X, Wu L, et al. Proteomic Analysis of Ubiquitinated Proteins in Rice (Oryza sativa) After Treatment With Pathogen-Associated Molecular Pattern (PAMP) Elicitors[J]. Front Plant Sci, 2018,9:1064.
doi: 10.3389/fpls.2018.01064 URL pmid: 30083178 |
[1] | 孟庆磊, 张玉良, 赵东辉, 贾伟娟, 何云江, 郗珊珊, 陈云娇, 王学理. 蜡样芽孢杆菌分型方法的研究进展[J]. 中国农学通报, 2022, 38(29): 61-66. |
[2] | 张晶, 刘立娜, 杨宝明, 王永芬, 何平, 徐胜涛, 尹可锁, 李舒, 白亭亭, 李永平, 李迅东, 郑泗军. 基于UPLC-MS/MS分析不同生态型香蕉品种青果皮的主要酚酸成分[J]. 中国农学通报, 2022, 38(28): 129-135. |
[3] | 王潇楠, 常虹, 王思威, 顾燕萍, 孙海滨, 刘艳萍. HPLC-MS/MS法测定枇杷中乙螨唑残留量及安全评价[J]. 中国农学通报, 2022, 38(22): 121-125. |
[4] | 尤梦瑶, 闫佳佳, 万璐, 张赫, 郑春英. 甘草产香内生真菌RP2的初步鉴定及挥发性成分分析[J]. 中国农学通报, 2022, 38(12): 138-145. |
[5] | 朱明霞, 白婷, 靳玉龙, 王姗姗, 刘小娇, 张玉红. 不同青稞品种风味物质分析[J]. 中国农学通报, 2022, 38(12): 146-152. |
[6] | 蒋昆明, 李振杰, 向能军, 刘泽, 韦克毅, 赵英良, 毕玉波, 李向珍, 王涛, 邹聪明, 刘志华. 基于感官差异的会泽旱烟和师宗旱烟香气成分的HS-SPME-GC/MS对比分析研究[J]. 中国农学通报, 2022, 38(10): 126-133. |
[7] | 曹桦, 许凤, 陆琳, 姬语潞, 陈翔, 张宝琼, 李涵. 4种香花型石斛花朵挥发性成分GC-MS分析[J]. 中国农学通报, 2021, 37(13): 56-62. |
[8] | 梁艳琼, 李锐, 吴伟怀, 谭施北, 习金根, 郑金龙, 陆英, 贺春萍, 易克贤. 基于HS-SPME-GC-MS的Bacillus subtilis Czk1挥发性物质的萃取条件优化[J]. 中国农学通报, 2021, 37(11): 24-31. |
[9] | 孙萍, 陈思瑾, 幸华, 张真, 姚园园, 杨学珍, 张晓娜, 栗孟飞. 温度对贯叶连翘挥发性有机化合物合成积累的影响[J]. 中国农学通报, 2021, 37(10): 65-71. |
[10] | 张月. 超高效液相色谱-串联质谱法测定水稻中噁唑酰草胺残留量[J]. 中国农学通报, 2020, 36(9): 127-131. |
[11] | 马卫华, 李立新, 申晋山, 武文卿, 宋怀磊, 张旭凤, 李捷. 不同萃取头对鸭梨花挥发性成分的影响[J]. 中国农学通报, 2020, 36(4): 147-150. |
[12] | 王爽, 李海英. 植物E3泛素连接酶与非生物胁迫相关研究进展[J]. 中国农学通报, 2020, 36(29): 47-53. |
[13] | 周芹, 吴玉梅. 超高效液相色谱串联质谱非衍生化法测定土壤中草甘膦及其代谢物氨甲基膦酸含量[J]. 中国农学通报, 2020, 36(27): 72-80. |
[14] | 刘文静, 林晶, 傅建炜, 吴建鸿. 超高效液相-串联质谱法测定茶叶中草甘膦、草铵膦、氨甲基膦酸残留[J]. 中国农学通报, 2020, 36(25): 129-136. |
[15] | 吴英详, 叶征美, 王文婷, 宗伟勋, 郭炳春, 李永裕. 顶空固相微萃取结合气相色谱-质谱技术分析千层金叶片的挥发性成分[J]. 中国农学通报, 2020, 36(2): 53-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||