[1] |
PETROV K, PETROVA P. Current advances in microbial production of acetoin and 2,3-butanediol by Bacillus spp.[J]. Fermentation-basel, 2021,7:307.
|
[2] |
MAINA S, PRABHUR A, VIVEK N, et al. Prospects on bio-based 2,3-butanediol and acetoin production: recent progress and advances[J]. Biotechnology advances, 2022,54:107783.
|
[3] |
PING L, BOLAND W. Signals from the underground: bacterial volatiles promote growth in Arabidopsis[J]. Trends in plant science, 2004,9:263-266.
|
[4] |
MENG W, MA C, XU P, et al. Biotechnological production of chiral acetoin[J]. Trends in biotechnology, 2022,40:958-973.
|
[5] |
MAINA S, SCHNEIDER R, ALEXANDRI M, et al. Volumetric oxygen transfer coefficient as fermentation control parameter to manipulate the production of either acetoin or D(-)2,3-butanediol using bakery waste[J]. Bioresource technology, 2021,335:125155.
|
[6] |
QIAN J, WANG Y, LIU X, et al. Improving acetoin production through construction of a genome-scale metabolic model[J]. Computers in biology and medicine, 2023,158:106833.
|
[7] |
KOCHIUS S, PAETZOLD M, SCHOLZ A, et al. Enantioselective enzymatic synthesis of the alpha-hydroxy ketone (R)-acetoin from meso-2,3-butanediol[J]. Journal of molecular catalysis b-enzymatic, 2014,103:61-66.
|
[8] |
LEE J H, LEE D Y, LEE S K, et al. Development of 2,3-butanediol production process from Klebsiella aerogenes ATCC 29007 using extracted sugars of chlorella pyrenoidosa and biodiesel-derived crude glycerol[J]. Processes, 2021,9:517.
|
[9] |
ZHANG L, LIU Q, GE Y, et al. Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae[J]. Green chemistry, 2016,18:1560-1570.
|
[10] |
SU H Y, LIN W H, LIANG Y L, et al. Co-production of acetoin and succinic acid using corncob hydrolysate by engineered Enterobacter cloacae[J]. Chemical engineering science, 2022,252:117511.
|
[11] |
KANIGA K, DELOR I, CORNELIS G R. A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica[J]. Gene, 1991,109:137-141.
|
[12] |
ABDELHAMED H, LAWRENCE M L, KARSI A. A novel suicide plasmid for efficient gene mutation in Listeria monocytogenes[J]. Plasmid, 2015,81:1-8.
|
[13] |
JI X, LU P, HU Y, et al. Function characterization of endogenous plasmids in Cronobacter sakazakii and identification of p-coumaric acid as plasmid-curing agent[J]. Frontiers in microbiology, 2021,12:687243.
|
[14] |
JAIN G, ERTESVAG H. Improved site-specific mutagenesis in Rhodococcus opacus using a novel conditional suicide plasmid[J]. Applied microbiology and biotechnology, 2022,106:7129-7138.
|
[15] |
NI W, QIAO J, HU S, et al. Efficient gene knockout in goats using CRISPR/Cas9 system[J]. Plos one, 2014,9:106718.
|
[16] |
CALDWELL B J, BELL C E. Structure and mechanism of the red recombination system of bacteriophage lambda[J]. Progress in biophysics & molecular biology, 2019,147:33-46.
|
[17] |
王雪, 黄建忠, 李力. 基因敲除技术在微生物中的应用[J]. 微生物学杂志, 2019,39:100-106.
|
[18] |
GAO S S, GUO W Y, SHI L T, et al. Characterization of acetoin production in a budC gene disrupted mutant of Serratia marcescens G12[J]. Journal of industrial microbiology & biotechnology, 2014,41:1267-1274.
|
[19] |
BAE S J, KIM S, HAHN J S. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase[J]. Scientific reports, 2016,6:27667.
|
[20] |
LU C, GE Y, CAO M, et al. Metabolic engineering of Bacillus licheniformis for production of acetoin[J]. Frontiers in bioengineering and biotechnology, 2020,8:125.
|
[21] |
WANG D, ZHOU J, CHEN C, et al. R-acetoin accumulation and dissimilation in Klebsiella pneumoniae[J]. Journal of industrial microbiology & biotechnology, 2015,42:1105-1115.
|
[22] |
SU H Y, WU S W, CHOU H H, et al. Recombinant cyanobacteria cultured in CO2 and seawater as feedstock for coproduction of acetoin and succinate by engineered Enterobacter cloacae[J]. Journal of co2 utilization, 2021,52:101683.
|
[23] |
JANG J W, JUNG H M, IM D K, et al. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing byproducts formation[J]. Enzyme and microbial technology, 2017,106:114-118.
|
[24] |
ZHANG L, ZHANG Y, LIU Q, et al. Production of diacetyl by metabolically engineered Enterobacter cloacae[J]. Scientific reports, 2015,5:9033.
|
[25] |
CUI Z, ZHAO Y, MAO Y, et al. In vitro biosynthesis of optically pure d-(-)-acetoin from meso-2,3-butanediol using 2,3-butanediol dehydrogenase and NADH oxidase[J]. Journal of chemical technology and biotechnology, 2019,94:2547-2554.
|