[1] |
SUN B, ZHENG A H, JIANG M, et al. CRISPR/Cas9-mediated mutagenesis of homologous genes in Chinese kale[J]. Sci rep, 2018, 8(1):16786.
doi: 10.1038/s41598-018-34884-9
pmid: 30429497
|
[2] |
GAO C X. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6):1621-1635.
doi: 10.1016/j.cell.2021.01.005
pmid: 33581057
|
[3] |
XIONG J S, DING J, LI Y. Genome-editing technologies and their potential application in horticultural crop breeding[J]. Hortic res, 2015, 2:15019.
|
[4] |
EL-MOUNADI K, MORALES-FLORIANO M L, GARCIA-RUIZ H. Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9[J]. Front plant sci, 2020, 11:56.
|
[5] |
FERREIRA P, CHOUPINA A B. CRISPR/Cas9 a simple, inexpensive and effective technique for gene editing[J]. Mol biol rep, 2022, 49(7):7079-7086.
doi: 10.1007/s11033-022-07442-w
pmid: 35716290
|
[6] |
HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699):57-63.
|
[7] |
WALTON R T, CHRISTIE K A, WHITTAKER M N, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488):290-296.
doi: 10.1126/science.aba8853
pmid: 32217751
|
[8] |
LI S Y, ZHANG Y X, XIA L Q, et al. CRISPR-Cas12a enables efficient biallelic gene targeting in rice[J]. Plant biotechnol j, 2020, 18(6):1351-1353.
doi: 10.1111/pbi.13295
pmid: 31730252
|
[9] |
MITKAS A A, VALVERDE M, CHEN W. Dynamic modulation of enzyme activity by synthetic CRISPR-Cas6 endonucleases[J]. Nat chem biol, 2022, 18(5):492-500.
doi: 10.1038/s41589-022-01005-7
pmid: 35468950
|
[10] |
BRAVO J P K, LIU M S, HIBSHMAN G N, et al. Structural basis for mismatch surveillance by CRISPR-Cas9[J]. Nature, 2022, 603(7900):343-347.
|
[11] |
GELVIN S B. Agrobacterium and plant genes involved in T-DNA transfer and integration[J]. Ann rev plant physiol plant mol biol, 2000, 51(1):223-256.
|
[12] |
CHENG M, LOWE B A, SPENCER T M, et al. Factors influencing agrobacterium-mediated transformation of monocotyledonous species[J]. In vitro cell dev biol-plant, 2004, 40(1):31-45.
|
[13] |
崔慧琳, 李志远, 方智远, 等. 结球甘蓝自交系YL-1的高效遗传转化体系的建立及应用[J]. 园艺学报, 2019, 46(2):345-355.
doi: 10.16420/j.issn.0513-353x.2018-0330
|
[14] |
DEBERNARDI J M, TRICOLI D M, ERCOLI M F, et al. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants[J]. Nat biotechnol, 2020, 38(11):1274-1279.
doi: 10.1038/s41587-020-0703-0
pmid: 33046875
|
[15] |
WANG K, SHI L, LIANG X N, et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation[J]. Nat plants, 2022, 8(2):110-117.
doi: 10.1038/s41477-021-01085-8
pmid: 35027699
|
[16] |
PAN W B, CHENG Z T, HAN Z G, et al. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing of watermelon assisted by genes encoding developmental regulators[J]. J zhejiang univ sci b, 2022, 23(4):339-344.
|
[17] |
FENG Q, XIAO L, HE Y Z, et al. Highly efficient, genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene[J]. J integr plant biol, 2021, 63(12):2038-2042.
|
[18] |
LIAN Z Y, NGUYEN C D, LIU L, et al. Application of developmental regulators to improve in planta or in vitro transformation in plants[J]. Plant biotechnol j, 2022, 20(8):1622-1635.
|
[19] |
PHILLIPS R L, KAEPPLER S M, OLHOF P. Genetic instability of plant tissue cultures: breakdown of normal controls[J]. Proc natl acad sci U S A, 1994, 91(12):5222-5226.
|
[20] |
MAHER M F, NASTI R A, VOLLBRECHT M, et al. Plant gene editing through de novo induction of meristems[J]. Nat biotechnol, 2020, 38(1):84-89.
doi: 10.1038/s41587-019-0337-2
pmid: 31844292
|
[21] |
ELLISON E E, NAGALAKSHMI U, GAMO M E, et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs[J]. Nat plants, 2020, 6(6):620-624.
doi: 10.1038/s41477-020-0670-y
pmid: 32483329
|
[22] |
LI T D, HU J C, SUN Y, et al. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture[J]. Mol plant, 2021, 14(11):1787-1798.
doi: 10.1016/j.molp.2021.07.010
pmid: 34274523
|
[23] |
CAO X S, XIE H T, SONG M L, et al. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture[J]. The innovation, 2022, 4(1):100345.
|
[24] |
ERPEN-DALLA CORTE L, M MAHMOUD L, S MORAES T, et al. Development of improved fruit, vegetable, and ornamental crops using the CRISPR/Cas9 genome editing technique[J]. Plants (Basel), 2019, 8(12):601.
|
[25] |
YUSTE-LISBONA F J, FERNÁNDEZ-LOZANO A, PINEDA B, et al. ENO regulates tomato fruit size through the floral meristem development network[J]. Proc natl acad sci U S A, 2020, 117(14):8187-8195.
|
[26] |
ZSÖGÖN A, ČERMÁK T, NAVES E R, et al. De novo domestication of wild tomato using genome editing[J]. Nat biotechnol, 2018, 36:1211-1216.
doi: 10.1038/nbt.4272
|
[27] |
SOYK S, LEMMON Z H, OVED M, et al. Bypassing negative epistasis on yield in tomato imposed by a domestication gene[J]. Cell, 2017, 169(6):1142-1155.
doi: S0092-8674(17)30486-5
pmid: 28528644
|
[28] |
KLAP C, YESHAYAHOU E, BOLGER A M, et al. Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function[J]. Plant biotechnol j, 2017, 15(5):634-647.
doi: 10.1111/pbi.12662
pmid: 27862876
|
[29] |
UETA R, ABE C, WATANABE T, et al. Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9[J]. Sci rep, 2017, 7:507.
doi: 10.1038/s41598-017-00501-4
pmid: 28360425
|
[30] |
LI R, SUN S, WANG H J, et al. FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato[J]. Nat commun, 2020, 11(1):5844.
doi: 10.1038/s41467-020-19705-w
pmid: 33203832
|
[31] |
TIEMAN D, ZHU G T, RESENDE MFR J, et al. A chemical genetic roadmap to improved tomato flavor[J]. Science, 2017, 355(6323):391-394.
doi: 10.1126/science.aal1556
pmid: 28126817
|
[32] |
ZHU G T, WANG S C, HUANG Z J, et al. Rewiring of the fruit metabolome in tomato breeding[J]. Cell, 2018, 172(1-2):249-261.
doi: S0092-8674(17)31499-X
pmid: 29328914
|
[33] |
KAWAGUCHI K, TAKEI-HOSHI R, YOSHIKAWA I, et al. Functional disruption of cell wall invertase inhibitor by genome editing increases sugar content of tomato fruit without decrease fruit weight[J]. Sci rep, 2021, 11(1):21534.
doi: 10.1038/s41598-021-00966-4
pmid: 34728724
|
[34] |
WANG B K, LI N, HUANG S Y, et al. Enhanced soluble sugar content in tomato fruit using CRISPR/Cas9-mediated SlINVINH1 and SlVPE5 gene editing[J]. Peerj, 2021, 9:e12478.
|
[35] |
WALALLAWITA U S, WOLBER F M, ZIV-GAL A, et al. Potential role of lycopene in the prevention of postmenopausal bone loss: evidence from molecular to clinical studies[J]. Int j mol sci, 2020, 21(19):7119.
|
[36] |
NONAKA S, ARAI C, TAKAYAMA M, et al. Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis[J]. Sci rep, 2017, 9(1):19822.
|
[37] |
LI R, LI R, LI X, et al. Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum[J]. Plant biotechnol j, 2018, 16(2):415-427.
|
[38] |
LI X D, WANG Y N, CHEN S, et al. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing[J]. Front plant sci, 2018, 9:559.
doi: 10.3389/fpls.2018.00559
pmid: 29755497
|
[39] |
PARKHI V, BHATTACHARYA A, CHOUDHARY S, et al. Demonstration of CRISPR-cas9-mediated pds gene editing in a tomato hybrid parental line[J]. Indian j genet, 2018, 78:132-137.
|
[40] |
WANG P, WANG Y, WANG W, et al. Ubiquitination of phytoene synthase 1 precursor modulates carotenoid biosynthesis in tomato[J]. Commun biol, 2020, 3(1):730.
doi: 10.1038/s42003-020-01474-3
pmid: 33273697
|
[41] |
ZHI J J, LIU X X, LI D J, et al. CRISPR/Cas9-mediated SlAN2 mutants reveal various regulatory models of anthocyanin biosynthesis in tomato plant[J]. Plant cell rep, 2020, 39(6):799-809.
doi: 10.1007/s00299-020-02531-1
pmid: 32221665
|
[42] |
NEKRASOV V, WANG C, WIN J, et al. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion[J]. Sci rep, 2017, 7(1):482.
doi: 10.1038/s41598-017-00578-x
pmid: 28352080
|
[43] |
PRAMANIK D, SHELAKE R M, PARK J, et al. CRISPR/Cas9-mediated generation of pathogen-resistant tomato against tomato yellow leaf curl virus and powdery mildew[J]. Int j mol sci, 2021, 22(4):1878.
|
[44] |
LI T D, YANG X P, YU Y, et al. Domestication of wild tomato is accelerated by genome editing[J]. Nat biotechnol, 2018, 36:1160-1163.
doi: 10.1038/nbt.4273
|
[45] |
TASHKANDI M, ALI Z, ALJEDAANI F, et al. Engineering resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato[J]. Plant signal behav, 2018, 13(10):e1525996.
|
[46] |
ORTIGOSA A, GIMENEZ-IBANEZ S, LEONHARDT N, et al. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2[J]. Plant biotechnol j, 2019, 17(3):665-673.
doi: 10.1111/pbi.13006
pmid: 30183125
|
[47] |
VEILLET F, PERROT L, CHAUVIN L, et al. Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor[J]. Int j mol sci, 2019, 20(2):402.
|
[48] |
BARI V K, NASSAR J A, KHEREDIN S M, et al. CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca[J]. Sci rep, 2019, 9(1):11438.
|
[49] |
ATARASHI H, JAYASINGHE W H, KWON J, et al. Artificially edited alleles of the eukaryotic translation initiation factor 4e1 gene differentially reduce susceptibility to cucumber mosaic virus and potato virus y in tomato[J]. Front microbiol, 2020, 11:564310.
|
[50] |
YOON Y J, VENKATESH J, LEE J H, et al. Genome editing of eIF4E1 in tomato confers resistance to pepper mottle virus[J]. Front plant sci, 2020, 11:1098.
|
[51] |
LI R, LIU C X, ZHAO R R, et al. CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance[J]. BMC plant biol, 2019, 19(1):38.
doi: 10.1186/s12870-018-1627-4
pmid: 30669982
|
[52] |
HASSAN M Z, RAHIM M A, JUNG H J, et al. Genome-wide characterization of NBS-encoding genes in watermelon and their potential association with gummy stem blight resistance[J]. Int j mol sci, 2019, 20(4):902.
|
[53] |
NEKRASOV V, STASKAWICZ B, WEIGEL D, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease[J]. Nat biotechnol, 2013, 31:691-693.
|
[54] |
TIAN S W, JIANG L J, GAO Q, et al. Efficient CRISPR/Cas9-based gene knockout in watermelon[J]. Plant cell rep, 2017, 36(3):399-406.
doi: 10.1007/s00299-016-2089-5
pmid: 27995308
|
[55] |
ZHANG R M, CHANG J J, LI J Y, et al. Disruption of the bHLH transcription factor abnormal tapetum 1 causes male sterility in watermelon[J]. Hortic res, 2021, 8(1):258.
|
[56] |
WANG Y P, WANG J F, GUO S G, et al. CRISPR/Cas9-mediated mutagenesis of ClBG1 decreased seed size and promoted seed germination in watermelon[J]. Hortic res, 2021, 8(1):70.
|
[57] |
NIU X W, ZHAO X Q, LING K S, et al. The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum - watermelon pathosystem[J]. Sci rep, 2016, 6:28146.
|
[58] |
ZHANG M, LIU Q L, YANG X P, et al. CRISPR/Cas9-mediated mutagenesis of Clpsk1 in watermelon to confer resistance to Fusarium oxysporum f.sp. niveum[J]. Plant cell rep, 2020, 39(5):589-595.
|
[59] |
TIAN S W, JIANG L J, CUI X X, et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing[J]. Plant cell rep, 2018, 37(9):1353-1356.
doi: 10.1007/s00299-018-2299-0
pmid: 29797048
|
[60] |
GUO S G, ZHAO S J, SUN H H, et al. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits[J]. Nat genet, 2019, 51(11):1616-1623.
doi: 10.1038/s41588-019-0518-4
pmid: 31676863
|
[61] |
REN Y, LI M Y, GUO S G, et al. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits[J]. Plant cell, 2021, 33(5):1554-1573.
|
[62] |
ZHANG J, GUO S G, JI G J, et al. A unique chromosome translocation disrupting ClWIP1 leads to gynoecy in watermelon[J]. Plant J, 2020, 101(2):265-277.
|
[63] |
CHANG J J, GUO Y L, YAN J Y, et al. The role of watermelon caffeic acid O-methyltransferase (ClCOMT1) in melatonin biosynthesis and abiotic stress tolerance[J]. Hortic res, 2021, 8(1):210.
|
[64] |
LAWRENSON T, SHORINOLA O, STACEY N, et al. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease[J]. Genome biol, 2015, 16:258.
|
[65] |
MA C F, ZHU C Z, ZHENG M, et al. CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. Capitata using the endogenous tRNA-processing system[J]. Hortic res, 2019, 6:20.
|
[66] |
LAILA R, ROBIN A H, YANG K, et al. Developmental and genotypic variation in leaf wax content and composition, and in expression of wax biosynthetic genes in Brassica oleracea var. capitata[J]. Front plant sci, 2017, 7:1972.
|
[67] |
LIU D M, TANG J, LIU Z M, et al. Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage (Brassica oleracea var. Capitata)[J]. BMC plant biol, 2017, 17(1):223.
|
[68] |
CAO W X, DONG X, JI J L, et al. BoCER1 is essential for the synthesis of cuticular wax in cabbage (Brassica oleracea var. Capitata)[J]. Sci hortic, 2021, 277:109801.
|
[69] |
SUN B, JIANG M, ZHENG H, et al. Color-related chlorophyll and carotenoid concentrations of Chinese kale can be altered through CRISPR/Cas9 targeted editing of the carotenoid isomerase gene BoaCRTISO[J]. Hortic res, 2020, 7(1):161.
|
[70] |
KLIMEK-CHODACKA M, OLESZKIEWICZ T, LOWDER L G, et al. Efficient CRISPR/Cas9-based genome editing in carrot cells[J]. Plant cell rep, 2018, 37(4):575-586.
|
[71] |
XU Z S, FENG K, XIONG A S. CRISPR/Cas9-mediated multiply targeted mutagenesis in orange and purple carrot plants[J]. Mol biotechnol, 2019, 61(3):191-199.
|
[72] |
CHANDRASEKARAN J, BRUMIN M, WOLF D, et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology[J]. Mol plant pathol, 2016, 17(7):1140-1153.
doi: 10.1111/mpp.12375
pmid: 26808139
|
[73] |
HU B W, LI D W, LIU X, et al. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 System[J]. Mol plant, 2017, 10(12):1575-1578.
doi: S1674-2052(17)30268-X
pmid: 28919533
|
[74] |
XIN T X, ZHANG Z, LI S, et al. Genetic regulation of ethylene dosage for cucumber fruit elongation[J]. Plant cell, 2019, 31(5):1063-1076.
doi: 10.1105/tpc.18.00957
|
[75] |
YANG X Y, YAN J B, ZHANG Z, et al. Regulation of plant architecture by a new histone acetyltransferase targeting gene bodies[J]. Nat plants, 2020, 6(7):809-822.
doi: 10.1038/s41477-020-0715-2
pmid: 32665652
|
[76] |
ZHANG Z, WANG B, WANG S, et al. Genome-wide target mapping shows histone deacetylase complex1 regulates cell proliferation in cucumber fruit[J]. Plant physiol, 2020, 182(1):167-184.
doi: 10.1104/pp.19.00532
pmid: 31378719
|
[77] |
WANG Z Y, WANG L M, HAN L J, et al. HECATE2 acts with GLABROUS3 and Tu to boost cytokinin biosynthesis and regulate cucumber fruit wart formation[J]. Plant physiol, 2021, 187(3):1619-1635.
doi: 10.1093/plphys/kiab377
pmid: 34618075
|
[78] |
ZHANG H M, LI S, YANG L, et al. Gain-of-function of the 1-aminocyclopropane-1-carboxylate synthase gene ACS1G induces female flower development in cucumber gynoecy[J]. Plant cell, 2021, 33(2):306-321.
|
[79] |
ANDERSSON M, TURESSON H, NICOLIA A, et al. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts[J]. Plant cell rep, 2017, 36(1):117-128.
doi: 10.1007/s00299-016-2062-3
pmid: 27699473
|
[80] |
NAKAYASU M, AKIYAMA R, LEE H J, et al. Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene[J]. Plant physiol biochem, 2018, 131:70-77.
|
[81] |
YE M M, PENG Z, TANG D, et al. Generation of self-compatible diploid potato by knockout of S-RNase[J]. Nat plants, 2018, 4(9):651-654.
doi: 10.1038/s41477-018-0218-6
pmid: 30104651
|
[82] |
BUTLER N M, ATKINS P A, VOYTAS D F, et al. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system[J]. Plos one, 2015, 10:e0144591.
|
[83] |
ZHAN X H, ZHANG F J, ZHONG Z Y, et al. Generation of virus-resistant potato plants by RNA genome targeting[J]. Plant biotechnol j, 2019, 17(9):1814-1822.
doi: 10.1111/pbi.13102
pmid: 30803101
|
[84] |
JUNG H, LEE A, JO S H, et al. Nitrogen signaling genes and SOC1 determine the flowering time in a reciprocal negative feedback loop in Chinese cabbage (Brassica rapa L.) based on CRISPR/Cas9-mediated mutagenesis of multiple BrSOC1 homologs[J]. Int j mol sci, 2021, 22(9):4631.
|
[85] |
JEONG S Y, AHN H, RYU J, et al. Generation of early-flowering chinese cabbage (Brassica rapa spp. pekinensis ) through Crispr/Cas9-mediated genome editing[J]. Plant biotechnol rep, 2019, 13(5):491-499.
|
[86] |
BERNARD G, GAGNEUL D, ALVES DOS SANTOS H, et al. Efficient genome editing using CRISPR/Cas9 technology in chicory[J]. Int j mol sci, 2019, 20:1155.
|
[87] |
BERTIER L D, RON M, HUO H, et al. High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR/Cas9-induced modifications of NCED4 in lettuce (Lactuca sativa)[J]. G3 (Bethesda), 2018, 8(5):1513-1521.
|
[88] |
HOOGHVORST I, LÓPEZ-CRISTOFFANINI C, NOGUÉS S. Efficient knockout of phytoene desaturase gene using CRISPR/Cas9 in melon[J]. Sci rep, 2019, 9(1):17077.
doi: 10.1038/s41598-019-53710-4
pmid: 31745156
|
[89] |
XIN T X, TIAN H J, MA Y L, et al. Targeted creating new mutants with compact plant architecture using CRISPR/Cas9 genome editing by an optimized genetic transformation procedure in cucurbit plants[J]. Hortic res, 2022, uhab086.
|
[90] |
HUANG Y, CAO H S, YANG L, et al. Tissue-specific respiratory burst oxidase homolog-dependent H2O2 signaling to the plasma membrane H+-ATPase confers potassium uptake and salinity tolerance in Cucurbitaceae[J]. J exp bot, 2019, 70(20):5879-5893.
|
[91] |
GENG S Y, SOHAIL H Z, CAO H S, et al. An efficient root transformation system for CRISPR/Cas9-based analyses of shoot-root communication in cucurbit crops[J]. Hortic res, 2022, 20:uhab082.
|
[92] |
MAIOLI A, GIANOGLIO S, MOGLIA A, et al. Simultaneous CRISPR/Cas9 editing of three PPO genes reduces fruit flesh browning in Solanum melongena L.[J]. Front plant sci, 2020, 11:607161.
|
[93] |
KIM H, CHOI J, WON K H. A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum[J]. BMC plant bio, 2020, l20(1):449.
|
[94] |
PARK S I, KIM H B, JEON H J, et al. Agrobacterium-mediated Capsicum annuum gene editing in two cultivars, hot pepper CM334 and bell pepper dempsey[J]. Int j mol sci, 2021, 22(8):3921.
|
[95] |
MISHRA R, MOHANTY J N, MAHANTY B, et al. A single transcript CRISPR/Cas9 mediated mutagenesis of CaERF28 confers anthracnose resistance in chilli pepper (Capsicum annuum L.)[J]. Planta, 2021, 254(1):5.
|
[96] |
ZHANG Y, MASSEL K, GODWIN I D, et al. Applications and potential of genome editing in crop improvement[J]. Genome biol, 2018, 19(1):210.
doi: 10.1186/s13059-018-1586-y
pmid: 30501614
|
[97] |
LIU Q, YANG F, ZHANG J J, et al. Application of CRISPR/Cas9 in crop quality improvement[J]. Int j mol sci, 2021, 22(8):4206.
|
[98] |
ZHANG J, SUN H H, GUO S G, et al. Decreased protein abundance of lycopene β-cyclase contributes to red flesh in domesticated watermelon[J]. Plant physiol, 2020b, 183(3):1171-1183.
|
[99] |
ZHANG Y, PRIBIL M, PALMGREN M, et al. A CRISPR way for accelerating improvement of food crops[J]. Nat food, 2020, 1:200-205.
|
[100] |
WANG H F, LA RUSSA M, QI L S. CRISPR/Cas9 in genome editing and beyond[J]. Annu rev biochem, 2016, 85:227-264.
doi: 10.1146/annurev-biochem-060815-014607
pmid: 27145843
|
[101] |
MORADPOUR M, ABDULAH SNA. CRISPR/dCas9 platforms in plants:strategies and applications beyond genome editing[J]. Plant biotechnol j, 2019, 18:32-44.
|
[102] |
CHOI G C G, ZHOU P, YUEN C T L, et al. Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9[J]. Nat methods, 2019, 16(8):722-730.
doi: 10.1038/s41592-019-0473-0
pmid: 31308554
|
[103] |
KOCAK D D, JOSEPHS E A, BHANDARKAR V, et al. Increasing the specificity of CRISPR systems with engineered RNA secondary structures[J]. Nat biotechnol, 2019, 37:657-666.
doi: 10.1038/s41587-019-0095-1
pmid: 30988504
|
[104] |
YOO B C, YADAV N S, OROZCO E M J, et al. Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts[J]. Peerj, 2020, 8:e8362.
|
[105] |
KANG B C, BAE S J, LEE S, et al. Chloroplast and mitochondrial DNA editing in plants[J]. Nat plants, 2021, 7(7):899-905.
|