[1] |
SMITH P, MARTINO D, CAI Z, et al. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture[J]. Agriculture, ecosystems & environment, 2007, 118(1-4):6-28.
|
[2] |
王浩成, 杨滨娟, 梁效贵, 等. 中国农田土壤有机碳库及其影响因素研究述评[J]. 生态科学, 2024, 43(2):260-270.
|
[3] |
LIANG C, AMELUNG W, LEHMANN J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global change biology, 2019, 25(11):3578-3590.
doi: 10.1111/gcb.14781
pmid: 31365780
|
[4] |
BUCKERIDGE K M, CREAMER C, WHITAKER J. Deconstructing the microbial necromass continuum to inform soil carbon sequestration[J]. Functional ecology, 2022, 36(6):1396-1410.
|
[5] |
WHALEN E D, GRANDY A S, SOKOL N W, et al. Clarifying the evidence for microbial- and plant-derived soil organic matter, and the path toward a more quantitative understanding[J]. Global change biology, 2022, 28(24):7167-7185.
|
[6] |
CAMENZIND T, MASON-JONES K, MANSOUR I, et al. Formation of necromass-derived soil organic carbon determined by microbial death pathways[J]. Nature geoscience, 2023, 16(2):115-122.
|
[7] |
申继凯, 黄懿梅, 黄倩, 等. 黄土高原不同植被类型土壤微生物残体碳的积累及其对有机碳的贡献[J]. 应用生态学报, 2024, 35(1):124-132.
doi: 10.13287/j.1001-9332.202401.014
|
[8] |
ANGST G, MUELLER K E, NIEROP K G J, et al. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter[J]. Soil biology and biochemistry, 2021,156:108189.
|
[9] |
SCHWEIGERT M, HERRMANN S, MILTNER A, et al. Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation[J]. Soil biology and biochemistry, 2015,88:120-127.
|
[10] |
ZHANG X, AMELUNG W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils[J]. Soil biology and biochemistry, 1996, 28(9):1201-1206.
|
[11] |
JOERGENSEN R G. Amino sugars as specific indices for fungal and bacterial residues in soil[J]. Biology and fertility of soils, 2018, 54(5):559-568.
|
[12] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
|
[13] |
中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978.
|
[14] |
VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil biology and biochemistry, 1987, 19(6):703-707.
|
[15] |
LI T, ZHANG J, WANG X, et al. Fungal necromass contributes more to soil organic carbon and more sensitive to land use intensity than bacterial necromass[J]. Applied soil ecology, 2022,176:104492.
|
[16] |
WANG B, AN S, LIANG C, et al. Microbial necromass as the source of soil organic carbon in global ecosystems[J]. Soil biology and biochemistry, 2021,162:108422.
|
[17] |
CAO Y, DING J, LI J, et al. Necromass-derived soil organic carbon and its drivers at the global scale[J]. Soil biology and biochemistry, 2023,181:109025.
|
[18] |
DING X, HE H, ZHANG B, et al. Plant-N incorporation into microbial amino sugars as affected by inorganic N addition: a microcosm study of 15N-labeled maize residue decomposition[J]. Soil biology and biochemistry, 2011, 43(9):1968-1974.
|
[19] |
LIU Z, LIU X, XIULAN W, et al. Long-term elevated CO2 and warming enhance microbial necromass carbon accumulation in a paddy soil[J]. Biology and fertility of soils, 2021,57:673-684.
|
[20] |
GRIEPENTROG M, BODÉ S, BOECKX P, et al. Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions[J]. Global change biology, 2014, 20(1):327-340.
doi: 10.1111/gcb.12374
pmid: 23996910
|
[21] |
KALLENBACH C M, FREY S D, GRANDY A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls[J]. Nature communications, 2016, 7(1):13630.
|
[22] |
ADAMCZYK B, SIETIÖ O-M, BIASI C, et al. Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils[J]. The new phytologist, 2019, 223(1):16-21.
|
[23] |
CHEN X, HU Y, XIA Y, et al. Contrasting pathways of carbon sequestration in paddy and upland soils[J]. Global change biology, 2021, 27(11):2478-2490.
doi: 10.1111/gcb.15595
pmid: 33713528
|
[24] |
KEILUWEIT M, WANZEK T, KLEBER M, et al. Anaerobic microsites have an unaccounted role in soil carbon stabilization[J]. Nature communications, 2017, 8(1):1771.
doi: 10.1038/s41467-017-01406-6
pmid: 29176641
|
[25] |
XU H, QU Q, LU B, et al. Variation in soil organic carbon stability and driving factors after vegetation restoration in different vegetation zones on the Loess Plateau, China[J]. Soil and tillage research, 2020,204: 104727.
|
[26] |
XIE B, ZHANG C, WANG G, et al. Global convergence in correlations among soil properties[J]. International journal of agricultural and biological engineering, 2020, 13(3):108-116.
|
[27] |
WANG C, LI H, SUN X, et al. Responses of soil microbial biomass and enzyme activities to natural restoration of reclaimed temperate marshes after abandonment[J]. Frontiers in environmental science, 2021,9:701610.
|
[28] |
马辉英, 李昕竹, 马鑫钰, 等. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(06):1124-1131.
|
[29] |
LI X, MA J, YANG Y, et al. Short-term response of soil microbial community to field conversion from dryland to paddy under the land consolidation process in North China[J]. Agriculture, 2019, 9(10):216.
|
[30] |
刘真勇, 高振, 王艳玲, 等. 旱地转变为稻田对关键带红壤剖面土壤团聚体碳含量的影响[J]. 土壤学报, 2019, 56(06):1526-1535.
|
[31] |
JIANG Y, LIANG Y, LI C, et al. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia[J]. Soil biology and biochemistry, 2016,95:250-261.
|
[32] |
MA C, CHEN X, ZHANG J, et al. Linking chemical structure of dissolved organic carbon and microbial community composition with submergence-induced soil organic carbon mineralization[J]. Science of the total environment, 2019,692:930-939.
|